
Computer Networks 175 (2020) 107268

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

TwinPeaks: An approach for certificateless public key distribution for the

internet and internet of things

Eunsang Cho

a , Jeongnyeo Kim

b , Minkyung Park

a , Hyeonmin Lee

a , Chorom Hamm

a ,
Soobin Park

a , Sungmin Sohn

a , Minhyeok Kang

a , Ted Taekyoung Kwon

a , ∗

a Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
b Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea

a r t i c l e i n f o

Keywords:

Public key infrastructure

Certificateless public key cryptography

Public key distribution

Internet of things

a b s t r a c t

The current public key infrastructure (PKI) has thorny issues like the overhead of certificate revocations and the

consequence of fraudulent certificates. To address such issues, we propose TwinPeaks, which is an infrastructure

to distribute public keys of named entities on the Internet and the Internet of Things (IoT). TwinPeaks leverages

certificateless public key cryptography (CL-PKC), where a key generation center (KGC) cannot know the private

key of its member, and hence its compromise will not result in member key leakage. By extending CL-PKC, the

public key of an entity becomes dependent on any combination of its networking parameters; thus TwinPeaks

can thwart spoofing attacks systematically. With TwinPeaks, the public key of every named entity is distributed

online while addressing the PKI’s vulnerabilities.

TwinPeaks has public key servers, which constitute the domain name system (DNS)-like hierarchical tree struc-

ture. For each parent-child link in the tree, the parent node serves as a key generation center (KGC), and its child

nodes set up their own public/secret key pairs by interacting with the KGC as proposed in CL-PKC. In this way,

every named entity (e.g., a domain name) has its own public/secret key pair. Thus, a public key of an entity will

be provided to a user by its key server as the DNS response is returned to the user by its DNS server.

TwinPeaks removes certificates and hence has no revocation overhead. Instead, each named entity should

keep/update its networking parameters and public key up-to-date in its DNS server and key server, respectively.

By making its public key depend on both its Internet protocol (IP) address and domain name, the compromise

of a single entity (e.g., a DNS or key server) cannot lead to successful impersonation. TwinPeaks achieves scal-

able distribution of public keys since public keys can be cached long term. We also show that TwinPeaks can be

applied to the IoT environments by extending the naming scheme.

1

m

c

d

t

T

s

n

t

C

c

t

o

t

G

u

w

m

l

s

t

p

c

h

R

A

1

. Introduction

Authenticating the other endpoint is a basis for making secure com-
unications over the Internet. For authentication in the Internet, a

ertificate-based public key infrastructure (PKI) is the de facto stan-
ard and thus a certificate authority (CA) has a crucial role which at-
ests the certificate as a binding between an entity and its public key.
herefore the CAs’ certificate operations (i.e., issuance and revocation)
hould be performed flawlessly. However, over the years, we have wit-
essed many high-profile attacks on the PKI due to its vulnerabilities in
erms of systems, operations, and practices. For instance, at least two
omodo resellers (GlobalTrust and InstantSSL) issued fake certificates
∗ Corresponding author.

E-mail addresses: escho@mmlab.snu.ac.kr (E. Cho), jnkim@etri.re.kr (J. Kim

rhamm@mmlab.snu.ac.kr (C. Hamm), sbpark@mmlab.snu.ac.kr (S. Park), sm

kkwon@snu.ac.kr (T.T. Kwon).

o

ttps://doi.org/10.1016/j.comnet.2020.107268

eceived 24 December 2018; Received in revised form 31 March 2020; Accepted 11

vailable online 17 April 2020

389-1286/© 2020 Elsevier B.V. All rights reserved.
f famous sites like mail.google.com and login.yahoo.com [1] . DigiNo-
ar was spoofed to issue at least 513 fraudulent certificates including
oogle domain names to the Iranian government, some of which were
sed for overseeing Google emails [2] . Two Taiwanese CAs’ private keys
ere compromised, which were used by Stuxnet developers to sign their
alware [3] .

The outcome of aforementioned attacks reveals the inherent prob-
ems of the PKI. First, there is no systematic limitation on certificate is-
uance. Therefore any CA can issue a certificate for any entity. Second,
rusting a wrong endpoint is possible if a single entity (e.g. CA) is com-
romised. Third, a compromise of a CA brings a painful recovery pro-
ess (e.g., revocation/reissuance of certificates). Fourth, the overhead
f maintaining revoked certificates keeps on increasing (e.g., the length
), mkpark@mmlab.snu.ac.kr (M. Park), hmlee@mmlab.snu.ac.kr (H. Lee),

sohn@mmlab.snu.ac.kr (S. Sohn), mhkang@mmlab.snu.ac.kr (M. Kang),

April 2020

https://doi.org/10.1016/j.comnet.2020.107268
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107268&domain=pdf
mailto:escho@mmlab.snu.ac.kr
mailto:jnkim@etri.re.kr
mailto:mkpark@mmlab.snu.ac.kr
mailto:hmlee@mmlab.snu.ac.kr
mailto:crhamm@mmlab.snu.ac.kr
mailto:sbpark@mmlab.snu.ac.kr
mailto:smsohn@mmlab.snu.ac.kr
mailto:mhkang@mmlab.snu.ac.kr
mailto:tkkwon@snu.ac.kr
http://www.mail.google.com
http://login.yahoo.com
https://doi.org/10.1016/j.comnet.2020.107268

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

o

c

c

t

a

i

t

u

b

a

m

t

r

t

t

(

l

f

e

p

P

w

c

t

P

a

t

(

(

F

v

e

n

a

t

g

t

s

a

c

t

o

u

P

f

u

2

g

a

t

o

S

t

s

b

b

a

a

p

a

a

A

b

s

a

d

t

D

c

t

a

p

t

c

D

b

C

s

c

l

H

m

p

v

a

3

t

d

c

t

p

c

s

c

S

d

C

n

o

t

a

a

c

h

t

t

h

c

b

k

s

w

C

C

p

t

b
f Certifiate Revocation Lists (CRLs) and/or the size of Online Certifi-
ate Status Protocol (OCSP) data). Fifth, the current practice of verifying
ertificates (and public keys therein) is dependent on the implementa-
ions of individual browsers and web servers [4] . Last but not least, us-
bility studies report that users often ignore certificate warnings, which
ndicates the possible vulnerability to simple certificate interception at-
acks [5] . Such PKI issues make us question whether we should continue
sing the PKI for authenticating endpoints. We believe the PKI should
e changed fundamentally to address the above issues. Prior studies of
ugmenting the PKI systems/operations without changing the PKI itself
ight lead to inefficient, ineffective, or interim solutions [6] .

To provide secure services in Internet of Things (IoT) environments,
he use of public key cryptography is highly desirable. However, IoT
aises the following issues in addition to the PKI problems aforemen-
ioned. First, using the PKI in the IoT may results in inappropriate prac-
ices such as (i) hard-coded root certificates inside the IoT device, or
ii) bypasses of verification of certificate chains due to the resource
imitations. Second, some IoT devices cannot interoperate with others
rom different manufacturers or service providers without any back-
nd assistance [7] . Some devices rely on their manufacturers or service
roviders for the authentication and secure channel setup by delegating
KI-related operations to remote servers. It may incur additional delays,
hich results in more resource consumption compared to direct and lo-

al communications.
As a building block of the infrastructure, TwinPeaks leverages cer-

ificateless public key cryptography (CL-PKC). A desirable feature of CL-
KC is that the public and secret keys of an Internet entity are generated
s a function of any arbitrary input string. For instance, an input string
o make the keys of a server can contain its fully qualified domain name
FQDN), say www.example.com . In this way, we can make the public
and secret) key be dependent on any networking parameters such as
QDN and IP address; thus TwinPeaks can thwart spoofing attacks.

Our Contribution. We propose a new infrastructure, TwinPeaks , to pro-
ide public keys of all the named entities (i.e., domain names) consid-
ring the above issues in the PKI. TwinPeaks makes the public key of a
amed entity depend on its public information, such as its domain name
nd IP address. In this case, a successful masquerading attack requires
o compromise both the public key and the public information of a tar-
et. Thus, a single point of compromise cannot lead to spoofing a user
o trust a fake endpoint (for a given domain name). Another merit of
uch generation of public keys is that it can help thwart DNS poisoning
ttacks if the domain name (or its endpoint) uses its public key for se-
ure communications. TwinPeaks removes the CA hierarchy (and hence
he whole PKI), but instead introduces a DNS-like hierarchical structure
f public key servers. We also provide the IoT authentication scenarios
sing TwinPeaks. By extending the identity (ID) naming scheme, Twin-
eaks can handle authentication of numerous IoT devices and can allow
or direct and local communications across devices from different man-
facturers or service providers.

. Related work

Numbers of previous research usually focused on the problems re-
arding the CA and certificate issues. Certificate Transparency [8] is
 log-based certificate validation approach. A certificate log is main-
ained by using a Merkle Hash Tree (MHT), which operates in append-
nly mode to validate certificates through the history of certificates.
overeign Keys [9] is another proposal which utilizes a timeline server
o attest the correctness of certificates based on the log of the timeline
erver. Accountable Key Infrastructure [10] proposes to use the com-
ination of the Integrity Log Server and Validators with a checks-and-
alances approach. It provides a public key validation infrastructure that
ims to reduce compromise and unavailability periods. BlockPKI [11] is
 blockchain-based PKI that enables an automated, resilient, and trans-
arent issuance of digital certificates. With a blockchain as a distributed
ppend-only ledger, all the operations related to certificate management
re logged in the blockchain for resiliency and transparency. It brings
utomated Certificate Management Environment (ACME) [12] into the
lockchain and its smart contract to automate issuance. However, these
chemes suggest yet another trusted third parties to keep monitoring and
rchiving the certificates typically by using append-only storage. Intro-
ucing more watchers/notaries could relieve the risk of PKI failures but
hese approaches would make the PKI landscape more complex.

There are DNS-centered approaches such as DNSSEC [13–15] and
ANE [16,17] . Both of these IETF working groups are initiated for se-
uring IP addresses and public keys of domain names (in their DNS en-
ries), which is crucial for secure connections over the Internet. DNSSEC
nd DANE utilize the CAs for the authentication of the IP address and the
ublic key of a domain name, respectively. DANE leverages DNSSEC in
he sense that a domain owner indicates the designated CA for its certifi-
ate. If the client has a query-response exchange with a DNSSEC-enabled
NS server, it can verify the authenticity of the response through the CA
y inquiring the certificate. As DANE relies on DNSSEC, it inherits the
A dependency from DNSSEC. If a domain owner in DANE uses self-
igned certificates, he or she can achieve the CA independency, but a
ertificate forgery may happen while being undetected.

TwinPeaks [18] suggests an infrastructure distributing certificate-
ess public key for the Internet, proposed as an alternative to the PKI.
owever, it did not encompass IoT service scenarios in which devices
ay play a server role without a fixed and public IP address. In this
aper, we extend TwinPeaks [18] in two aspects: (i) supporting IoT en-
ironments with backward-compatibility, and (ii) elaborating its oper-
tions and security analysis.

. Design rationale

Considering the problems of the current PKI systems and opera-
ions, we conclude that a fundamentally new infrastructure should be
esigned.

Detection (Easy/Instant Detection of Fraudulent Certifi-

ates/Public Keys): When a CA is compromised or spoofed, it is likely
o issue a fraudulent (but seemingly valid) certificate. The central
roblem is that the current revocation mechanism (i.e., CRL or OCSP)
annot help detect the fraudulent certificate since it looks valid until
omebody detects and reports it to the CA [19] . Moreover, fraudulent
ertificates are not easy to detect and may even go undetected [20,21] .
poofing of any named entity should be instantly and systemically
etected.

Responsibility (Due Positioning of Responsibility in Case of

ompromise): In the current PKI, even if a CA is compromised by its
egligence of operations (e.g., out-of-date software patch), the damage
f a fraudulent certificate (i.e., trusting wrong endpoints) goes to the en-
ity of the spoofed domain name and/or its clients. We seek to achieve
 goal that the entity responsible for compromises should take the li-
bility. That is, we make a named entity (e.g., a website) in charge of
ountermeasures against certificate- or public key-related attacks, and
ence it will take the responsibility in case of compromises.

Separation (of the Source and the Owner of the Public Key): With
he current PKI, a client contacts a server and receives its certificate from
he server itself. Thus, if the server is compromised, the attacker may
ave replaced its certificate by a fraudulent one. The client has no other
hoice but to believe the server if the fraudulent certificate is verified
y the PKI. We believe it is safer to separate the source of the public
ey and the server verified by the public key. In this way, the attacker
hould compromise both the source and the server of the public key,
hich makes public key-related attacks more difficult.

Scoping (of Certificate Issuance): In the current CA practice, any
A can issue a certificate for any entity. That is, the compromise of any
A can result in a forged certificate for any entity. Also, a certificate (or a
ublic key therein) of an entity could be issued even without contacting
he entity itself. We believe the unlimited range of certificate issuance
y any CA is one of the root causes of the PKI problems. Thus, we limit

http://www.example.com

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

t

c

h

t

n

t

P

k

d

c

a

s

t

h

I

a

D

(

o

4

a

P

o

t

T

G

k

d

a

t

e

t

I

s

r

l

a

o

i

t

(

i

e

b

t

t

p

a

P

t

a

p

C

k

i

t

[

t

t

i

a

r

p

o

p

p

b

I

a

u

k

a

a

f

i

e

c

c

b

b

l

a

[

l

K

m

p

t

l

i

5

l

m

i

m

k

d

R

p

d

k

f

t

a
𝑋

i

a

he scope of issuing a public key of a named entity systematically by
onstructing a certain structure.

Scalability (in terms of Number of Named Entities): The Internet
as been and will be growing in terms of the volume of traffic and also
he number of connected devices (say, IoT). Accordingly, the number of
amed entities that are to be authenticated will increase. Also, the cost
o obtain/verify certificates for devices is not trivial with the current
KI. Hence, the new infrastructure should be able to distribute public
eys in a scalable and inexpensive fashion.

Deployability (of A New Infrastructure): The business model un-
erlying the current PKI is somewhat a misfit. For instance, a CA cannot
harge a relying party (i.e. , a client) for the cost of certificate man-
gement like revocation [22] . The new infrastructure should be de-
igned in such a way that its deployment can take into account rela-
ions/incentives among/to interest parties. That is, the relevant stake-
olders find it easy/practical to accommodate the new infrastructure.
n the same vein, legacy systems or business relations should be reused
s much as possible. The proposed infrastructure leverages the current
NS hierarchy, so that DNS operators and Internet service providers

ISPs) can participate in deploying the infrastructure easily with new
pportunities for public key businesses.

. Background: Certificateless public key cryptography (CL-PKC)

To design a new infrastructure that distributes public keys for the
bove criteria, we adopt the certificateless public key cryptography (CL-
KC), which is a core mechanism of TwinPeaks. Let us first explain the
riginal CL-PKC scheme [23] and advanced CL-PKC schemes [24–26] in
his section, and then detail how we bring CL-PKC for substantiating
winPeaks in Section 5 .

In traditional public key cryptographic algorithms (e.g., RSA and El-
amal) that underpin the most of the PKI systems, the public/private
ey pair is generated from some random values, which has nothing to
o with the method of verifying the binding between the public key
nd the entity’s identity. That is why there is a requirement for a cer-
ificate (and the PKI) to verify the binding, which entails the PKI issues
xplained earlier.

To solve this fundamental problem, there have been many studies
o tackle the authenticity of public keys from a different perspective.
dentity-based public key cryptography (ID-PKC) is proposed and sub-
tantiated to address this issue [27] , where an entity’s public key is de-
ived from its identity value (i.e., any unique string related to its identity
ike an email address). Thus, finding the public key of an entity is simple
nd there is no possibility of fraudulent certificates. The key advantage
f ID-PKC is that anybody who knows the public parameters and the
dentity of a member can derive the public key of the member. Thus,
he PKI is not needed any more.

However, ID-PKC has its own drawbacks. The private key generator
PKG) which is a trusted third party (TTP) has a master secret key, which
s used to derive the private key (along with the public parameters) of
ach member. Hence, the PKG knows the private keys of all the mem-
ers, so-called the key escrow problem. For instance, the PKG can forge
he signature of any member. What is worse, if the PKG is compromised,
he private keys of all the members may be revealed.

To tackle the dependency on the PKG, Al-Riyami and Paterson (AP)
roposed the original CL-PKC formulation [23,28] . A CL-PKC system
lso has a TTP, which is called a key generation center (KGC). Like ID-
KC, the KGC has a master secret key; however, the KGC cannot know
he private keys of the members. Instead, the KGC (securely) supplies
 member with a partial private key. The member generates its own
rivate key from both the partial private key and its own secret. The
L-PKC scheme is based on ID-PKC in the sense that the partial private
ey (of a member) is derived from any arbitrary string related to the
dentity of the member. The member also generates its public key from
he KGC’s public parameters, and its own secret.
Let us now briefly describe the main algorithms of the AP scheme
23] . Discussing the mathematical details of the algorithms goes beyond
he scope of this paper, please refer to [23] for the details. Suppose that
he KGC is assumed to set up a system with member m whose identifier
s given by ID m

. The member m can obtain its key pairs by the seven
lgorithms below by itself or by interacting with the KGC.

Setup: In the KGC, this algorithm takes a security parameter k , and
eturns the system parameters params and master-key . The system
arameters include the message space  , and ciphertext space , and
ther cryptographic parameters.

Partial-Private-Key-Extract: In the KGC, this algorithm takes
arams , master-key , and a member identifier ID m

∈ {0, 1} ∗ as in-
ut, and returns a partial private key D m

. The partial private key should
e delivered to m over a secure channel.

Set-Secret-Value: In member m , this algorithm takes params and
D m

as input, and outputs its own secret value x m

with randomness.
Set-Private-Key: In member m , this algorithm takes params , D m

,
nd x m

as input, and returns the private key S m

. That is, the value x m

is
sed to transform D m

into the final private key S m

. Thus, the KGC cannot
now the private key of member m .

Set-Public-Key: In member m , this algorithm takes params and x m

s input, and returns the public key P m

.
Encrypt: This algorithm takes params , a message M, P m

and ID m

s input, and returns either a ciphertext C or the null symbol ⊥ when it
ails.

Decrypt: In member m , this algorithm takes params , C and S m

as
nput, and returns either M or ⊥ when it fails.

Due to the computational complexity of the bilinear pairing, how-
ver, schemes using the AP formulation have been questioned about the
ostly operations. Baek, Safavi-Naini and Susilo (BSS) [24] proposed a
ertificateless public key encryption scheme without the bilinear pairing
y relaxing the AP formulation.

In the original AP formulation, the public key is generated in mem-
er m at any time without the intervention of the KGC. The BSS formu-
ation modified key generation algorithms to generate public key only
fter obtaining the partial keys from the KGC. Later, Lai and Kou (LK)
25] formulation gives more restrictions on the generation of the pub-
ic key by using a key generation protocol between member m and the
GC. These alterations lead the public key and the identity of member
 more linked than the AP formulation.

As a building block of TwinPeaks described in Section 5.2 , a pro-
osed scheme of Yao, Han, and Du (YHD) [26] is chosen and is used for
he implementation of TwinPeaks evaluation. YHD proposed certificate-
ess public key encryption and signature schemes based on ECC, which
s following the BSS formulation. The encryption scheme is constructed
 steps as followings:

Setup: In the KGC, this algorithm takes a security parameter
 and parameters for an elliptic curve as input, and it returns
aster-private-key and the system parameters params includ-

ng master-public-key .
Partial-Key-Extract: In the KGC, this algorithm takes params ,

aster-private-key and ID m

as input, returns a partial private
ey d m

and a partial public key R m

. The partial key (d m

, R m

) should be
elivered to m over a secure channel.

Key-Generate: In member m , this algorithm takes params , (d m

,

 m

), and ID m

as input, and returns the private key S m

and the executive
ublic key X m

. A random secret value x m

is chosen and used to transform
 m

into the final private key S m

. Thus, the KGC cannot know the private
ey of member m . Also, the actual public key P m

is a point multiplication
or a scalar S m

and a base point G within params (𝑃 𝑚 = 𝑆 𝑚 × 𝐺). In
urn, P m

is equivalent to a point addition of master-public-key
nd a point multiplication of hash of ID m

and X m

(𝑃 𝑚 = 𝑃 𝑝𝑢𝑏 + 𝐻 (𝐼 𝐷 𝑚) ×
 𝑚 where P pub is master-public-key). Therefore the public key P m

s linked with ID m

and master-public-key , and P m

can prove its
uthenticity by itself.

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

a

i

m

a

R

s

v

a

f

p

k

A

e

p

v

l

5

s

P

w

t

i

5

s

c

d

t

5

n

m

r

k

t

W

B

F

k

T

K

5

a

c

F

T

a

a

i

n

s

a

D

d

t

(

a

s

s

s

T

i

s

i

w

I

i

i

e

5

P

a

r

s

q

b

n

s

5

s

c

o

w

w

S

s

f

t

T

t

s

a

I

q

a

l

s

c

c

a

s

p

b

1 The local recursive DNS resolver is omitted in Fig. 1 for simplicity.
Encrypt: This algorithm takes params , a message M, X m

, and ID m

s input, and returns a ciphertext C .
Decrypt: In member m , this algorithm takes params , C and S m

as
nput, and returns either M or ⊥ when it fails.

Note that the Encrypt algorithm takes ID m

as input (in addition to a
essage to send), and thus there is an additional linkage with ID m

when
 client encrypts a message for a server (i.e., member m). Compared to
SA- or ECC-based public keys, we believe such linkage is important
ince if the destination of the encrypted message does not know the pri-
ate key which is also linked with ID m

, it cannot decrypt the message,
nd hence the masquerading attack will be much more difficult. There-
ore, the YHD scheme provides the binding between an entity and its
ublic/private keys without a certificate of RSA- or ECC-based public
ey.

However, CL-PKC is designed for operations only in a single domain.
lso, an input string for key generation (of an Internet server) is not
laborated for realistic attacks and countermeasures in CL-PKC. We ap-
ly CL-PKC into TwinPeaks for Internet-scale operations and networking
ulnerabilities in order to replace PKI. TwinPeaks is to provide the pub-
ic key of every named entity or server.

. How TwinPeaks works

TwinPeaks is a new infrastructure that distributes public keys con-
idering the above criteria. We first explain the overall design of Twin-
eaks, followed by how the public key of a named entity (e.g., a website
ith a domain name) is distributed to a relying party (i.e., a client). We

hen explain how CL-PKC [23,24,26] is modified to substantiate the new
nfrastructure for providing public keys.

.1. TwinPeaks design

For each named entity, TwinPeaks introduces a corresponding key
erver that provides its public key online. The key servers collectively
onstruct a DNS-like hierarchy, which is called a key server hierarchy .

Instead of the PKI, TwinPeaks key servers take a role of public key
istribution. The followings look into the key servers, the construction of
he key server hierarchy, and the step-by-step operation of TwinPeaks.

.1.1. Key server

A key server distributes public keys of its corresponding entities. The
amed entity registers its name, public key, and other required infor-
ation to the key server. For example, a www.example.com web server

egisters its FQDN, a corresponding public key, and an IP address to the
ey server of example.com domain. The registered information contains
he public information such as a part of DNS or Blockchain entries.

A key server also registers its information to the another key server.
hen the information of the key server A is registered to the key server

, we call the key server A as a child and the key server B as a parent .
or example, example.com key server registers its information to .com
ey server, just as the DNS-like hierarchy.

A key server can be working as a KGC, or have its dedicated KGC.
he registered named entity or key server should be a member of the
GC of the key server.

.1.2. DNS and key server hierarchy

TwinPeaks consists of two parts: one is the public information, such
s the legacy DNS hierarchy, and the other is the key server hierar-
hy (as shown in the left and right part of Fig. 1 , respectively). While
ig. 1 shows only a single root in the key server hierarchy in detail, the
winPeaks architecture supports multiple roots. A country, a regional
lliance, or a large organization can construct its own root key server to
void the issues of a single root of trust (which might be problematic as
n DNSSEC and RPKI).

Note that every link in the DNS hierarchy reflects the current busi-
ess or administrative relation already established among different DNS
ervers (or domains). Thus, it is not too difficult for a domain to deploy
nother key server in addition to its DNS server. Recall that a parent
NS server and its child usually set up a security association for secure
ynamic updates of DNS entries. Thus, it should be easy to securely dis-
ribute a partial private key from a KGC (i.e., a parent) to its member
its child) in the key server hierarchy.

Each root key server has its own public key parameters and serves
s a KGC on its own, which operates independently of other root key
ervers. At the next lower level in the hierarchy, a top level key (TLK)

erver corresponds to a top level DNS server in the DNS. Usually, a TLK
erver can be a member of each and every root key server, separately.
hat is, if there are n root key servers, a TLK server generates up to n

ndependent key pairs.
However, we allow a TLK server not to be a member of some root key

ervers due to political and distrust issues. Thus, the TLK server will have
ts public/private key pair for each root key server which it is associated
ith. Also, every relying party is assumed to pre-load the public keys,

P addresses, and public parameters of multiple root key servers. (This
s similar to the current practice that browsers and operating systems
nclude the certificates of trusted root CAs.) Henceforth, for the sake of
xposition, we will assume only a single root key server by default.

.1.3. Message types

There are two kinds of messages for obtaining a public key in Twin-
eaks: one is for query, and the other is for response. The new messages
re only for communicate with key servers, and the ordinary DNS query-
esponse remains unchanged.

The query message (key request message) consists of ID components,
uch as a domain name, a IP address, other DNS entries which are re-
uired, and the cryptographic hash of itself. The packet length is variable
ecause the length of ID (and also its components) is not predefined.

The response message (key response message) consists of ID compo-
ents as the query message does, and the public key which is corre-
ponding to the requested ID follows.

.1.4. In-depth operations

Suppose a client wishes to establish a secure connection to the
erver with the domain name of www.a.com . Note that there is a pre-
onfiguration of the public key, the IP address, and public parameters
f a root key server on the client (Step 1 in Fig. 1). As the server
ww.a.com is a member of the domain (a.com), the public key of
ww.a.com has been registered with the a.com key server (Step 2).
imilarly, the public key of a.com is registered with the .com TLK
erver, which in turn registers its public key with the root key server.

After the client looks up the IP address of www.a.com as public in-
ormation from the DNS (Step 3a to 3c), 1 , the client starts to resolve
he public key by sending a key request message to the root key server.
he root key server then replies with a key response message , which con-
ains the public key, the IP address, the public parameters of the TLK
erver (.com), and the signature of the root. This process will be iter-
ted downward until the client obtains the public key of www.a.com .
n general, public key lookup is similar to the iterative handling of DNS
ueries along the DNS hierarchy (Step 4a to 4c).

Finally, with the obtained public key and IP address, the client can
ssure the authenticity by sending an encrypted message using the pub-
ic key to the IP address. If the server www.a.com can decrypt the mes-
age with its private key, it can reply the authentic response back to the
lient. In contrast to the CAs’ burden of key verification in the PKI, the
lient and server in TwinPeaks interact for public key verification. As
 side benefit, TwinPeaks is more resilient to version rollback attacks
ince a client does not have to send messages in plaintext.

Additionally, the key server hierarchy is also used for issuance of
artial keys when establishing the secure channel with KGC. A mem-
er of the domain can obtain the public key, the IP address, and the

http://www.example.com
http://www.example.com
http://www.example.com
http://www.a.com
http://www.a.com
http://www.a.com
http://www.a.com
http://www.a.com
http://www.a.com

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

Fig. 1. Overview of the TwinPeaks operations is shown. To

connect to website www.a.com , a relying party retrieves its

IP address from the DNS hierarchy on the left, and its public

key from the key server hierarchy on the right.

p

s

a

t

k

5

t

g

m

w

d

a

a

r

s

s

l

(

o

t

i

p

F

(

o

r

m

s

a

a

t

g

d

f

s

k

6

6

p

w

I

6

I

(

T

p

i

p

d

s

s

e

k

w

a

6

l

2 Here, IP-address is an IPv4 or IPv6 address, which is public and

routable.
3 Recall that the IP address is an element of the ID in TwinPeaks.
ublic parameters of the corresponding key server by looking up key
ervers from the root iteratively. Note that the key server works as
 KGC on its own or has a dedicated KGC, the secure channel to
he corresponding KGC can be established using the retrieved public
ey.

.2. CL-PKC as a building block

CL-PKC is an algorithm for public-key-based encryption and decryp-
ion as RSA and ECC, not an infrastructure as the PKI. To bring the al-
orithm into the Internet, in TwinPeaks, some modifications need to be
ade in consideration with the concept of autonomous domains. Thus
e need to extend environments of CL-PKC for operations in multiple
omain environments of the Internet.

In order to work through independent domains with TwinPeaks, we
dopt the DNS hierarchy partly because two linked nodes (say, parent
nd child) in the DNS hierarchy usually have security associations al-
eady. For instance, a parent DNS server and a child DNS server usually
hare a secret for secure dynamic updates of DNS entries [29] .

At the top of the hierarchy, there is a root key server that corre-
ponds to a root DNS server. From the root key server, the next lower
evel key server is a TLK server that corresponds to a top level domain
TLD) DNS server. In this case, the root key server works as the KGC
f a domain, and the TLK server is a member of the domain. Thus,
he root key server and the TLK server perform the CL-PKC algorithms
n Section 4 so that the TLK server has its own private/public key
air.

The same relation/interaction will be iterated as shown in Step 2 of
ig. 1 between the TLK server and the second level key (SLK) server
say, example.com key server). Then we assume that the public keys
f named entities (e.g., websites) that belong to the same domain are
egistered with the SLK server. That is, the key server of example.com
aintains the up-to-date public keys of all of its members in the domain.

Another modification of the algorithm is related to the ID naming
cheme of the CL-PKC algorithm. As explained in [23] , ID m

is any string
bout member m ’s identity. We concatenate the domain name, the IP
ddress of the member, and the hash of public parameters of the en-
ity’s key server (against the forgery of the public parameters). Alto-
ether, the entity m ’s identity for the secret value is given by 𝐼𝐷 =
𝑚
omain-name || IP-address 2 || h (params), where h (·) is a hash
unction. In case its domain name or IP address is changed, the member
hould change its public key due to the binding of ID m

and its public
ey.

. Operation and deployment of TwinPeaks

.1. Public key update

The public key with ID m

in TwinPeaks may be used long term de-
ending on the policy. However, we need to focus on the conditions
hich bring enforced public key updates such as node compromises or

P address changes by modifying its identifier ID m

.

.1.1. Update cases

First, The key server compromise comes from the following cases. (i)
n case of the compromise of the parent key server, the parent key server
as a KGC) should re-establish its master key and public parameters.
hen the key server (as a child) should re-build the public/private key
air with the parent. (ii) In case of the compromise of the key server
tself, the key server (as a KGC) should update its master key and public
arameters. Note that compromise of a key server does not affect all the
escendants but only its children.

Next, in case of the compromise of a named entity, it regenerates its
ecret value, and re-establishes its public/private key pair with its key
erver.

Finally, in case of the IP address change of a key server or a named
ntity, its secret value is required to be updated. 3 Then its public/private
ey pair is also changed. Thus, the new public key should be registered
ith its parent node in the key server hierarchy. Note that its new IP
ddress should also be registered with its parent node.

.1.2. Update as implicit revocation

While we use the term ‘update’ for the case in which an old pub-
ic key is discarded and a new key is issued in TwinPeaks, the ‘update’

http://www.a.com
http://www.example.com
http://www.example.com

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

Fig. 2. Operations of the TLS variant for Twin-

Peaks are illustrated. To connect to server B, relying

party A retrieves B’s IP address from the DNS, and

B’s public key from the key server hierarchy (only

the last key server is depicted for brevity). After

that, the relying party starts simplified TLS hand-

shakes.

m

P

c

p

k

a

d

s

t

i

6

e

l

T

r

k

m

t

c

o

d

u

t

u

i

t

p

6

6

I

i

m

f

i

6

(

t

s

w

P

e

r

t

a

d

l

t

c

i

fi

r

l

t

6

t

c

c

o

g

f

t

m

s

t

echanism can be deemed roughly equivalent to ‘revocation’ in the PKI.
eriodically updating public keys would help enhance the overall se-
urity in TwinPeaks. Sometimes, periodically updating a public key is
ossible without changing its ID, when the node wants to update its
ey periodically or occasionally for stronger security. In that case, there
re no differences with explanations above. The updated key will be
istributed from the key server immediately.

Just as the IP address of a domain name can be cached in the DNS,
o the public key of a server can be cached in TwinPeaks. With caching,
here should be some mechanism to notify key updates, which is detailed
n Section 6.2 .

.2. Public key caching

TwinPeaks can achieve scalable distribution of public keys of named
ntities since public keys can be cached like DNS resource records. As a
ocal DNS resolver caches recent DNS responses, a local key resolver of
winPeaks can cache recent responses from key servers. The cacheable
esponses are not only the public key of the node, but also the public
eys of the key servers along the key server hierarchy. With the caching
echanism, retrieving a public key can be accelerated, and the load of

he key server hierarchy will be relieved significantly.
The key resolver incurs no additional communication overhead for

aching operation. For caching, all the required data can be obtained by
bserving key request and response messages. The additional cacheable
ata includes the ID related to the public key, the public parameters
sed for public key generation, and the signature of the key server of
he node are cached along with the public key.

If the public key of the node is updated, the client can figure out the
pdate from responses from the node itself (say, ‘outdated public key’
n ServerHello in Fig. 2 , to be detailed later). Then the client will ask
he key resolver to invalidate the cached entry, and to retrieve the new
ublic key again.

.3. Deployment

.3.1. Island approach

TwinPeaks can be deployed incrementally, which is important since
SPs cannot deploy a new network infrastructure in a coordinated fash-
on. Even if TwinPeaks has the DNS-like hierarchy, it does not have to
irror the DNS hierarchy in the same fashion. It can be deployed in the
orm of islands since a “local ” root key server can be located at any level
n the DNS hierarchy.

.3.2. TLS Variant

Another merit of TwinPeaks is that the existing security protocol
e.g., TLS 1.2) can be substantially simplified with the new infrastruc-
ure. In the following, we will illustrate how TLS can be simplified for the
ecure connection setup. Note that most of the TLS protocol is retained,
hile the handshake part is substantially simplified with TwinPeaks.

We change the TLS handshake procedure for the operations in Twin-
eaks as shown in Fig. 2 . The major difference is that the certificate
xchange and verification in TLS are removed since the client already
etrieves the public key of the server during the key resolution. Note
hat the time to verify the certificates from CAs (e.g., OCSP servers) is
lso eliminated. When a client initiates a TLS handshake, it sends the
omain name, the IP address, and the hashed value of the server’s pub-
ic key and public parameters in the ClientHello message (in addition to
he original fields like the list of cipher suites). Next, the server, on re-
eipt of the message from the client, can confirm the correctness of the
nformation in the message. If it is wrong, the server can identify which
eld has a problem, and depending on the problem(s), it can notify the
elevant entities (like the client or the key server) of the identified prob-
em(s). If the information is correct, the server and the client continue
o exchange TLS messages to derive a shared session key.

.3.3. Consideration of the Internet practice

We have discussed basic operations of TwinPeaks so far, however,
he current Internet has more complex practices.

Multiple IP Addresses for a Domain Name : A single domain name
an be mapped to multiple IP addresses, e.g., load balancing, or use of
ontent delivery network (CDN) services, etc. In TwinPeaks, a number
f public key for a domain name is allowed, thus a new public key can be
enerated for each IP address. If the DNS returns multiple IP addresses
or a requested domain name, the client chooses a single IP address for
he Internet communication. In the same way, the client can choose a
atched public key with the chosen IP address. In this case, the corre-

ponding key server has the burden of managing the public keys for all
he IP addresses of the same domain name.

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

r

c

r

r

f

b

c

i

C

i

c

a

t

c

o

m

c

w

T

m

c

7

s

n

i

l

I

c

b

a

s

a

c

t

b

f

b

e

o

o

A

m

7

a

v

u

t

h

d

b

d

t

d

n

t

o

e

7

b

a

b

I

v

e

t

𝐼

i

k

7

I

u

g

f

(

t

n

v

R

s

o

a

t

r

p

I

s

7

d

s

I

d

A

b

v

A

i

S

k
HTTP Redirection : In the web, CDNs rely on application-level
erouting or DNS-level rerouting to forward the request to a close repli-
ation point. In case of application-level rerouting, it can be handled
egardless of TwinPeaks. For example, a URL address in the HTTP GET
equest can be redirected to another URL. Then the client will per-
orm another resolution for the newly-acquired URL. However, DNS-
ased request rerouting requires some extension to TwinPeaks. In many
ases, DNS-based request routing utilizes a CNAME resource record
n the DNS for redirection [30] . Suppose that a.com is redirected to
NAME a.cdn1.com at the DNS level. Then the a.com key server can

ndicate the corresponding CDN provider’s key server. 4 After that, the
lient compares the CNAME resource record of a.com (which is actually
.cdn1.com) and the delegation information from the key server, and
hen verifies whether the two responses match.

Cloud-based Services : Number of Internet services are based upon
loud services because of the elasticity of resources. However, scale-out
f service or migrating resources (e.g., virtual machine (VM) images)
ay result in frequent IP address changes. In this case, most of IP address

hanges occur within data center networks and the public IP addresses
hich are typically used for front-end servers are remained unchanged.
hus clients can connect to the same public IP addresses for secure com-
unication without frequent changes of the public keys related to the

loud-based services.

. Applying TwinPeaks into IoT environments

IoT is becoming popular in our daily lives. However, IoT devices and
ervices are designed and developed for individual situations and sce-
arios without standard ways of authentication. It makes it difficult to
nterconnect devices/services from different manufacturers/providers.

Security technologies of the Internet may be applicable to the IoT
andscape. However, there are issues regarding the authentication in
oT. For example, using PKI in the IoT results in inappropriate usage
ases such as (i) hard-coded root certificates inside the IoT device, or (ii)
ypasses of verification of certificate chains due to the communication
nd computation limits of IoT devices.

Addressing two reasons aforementioned, some hub devices like smart
peakers, such as Amazon Echo [31] or Google Home [32] , use back-end
uthentication [7] and interconnection through OAuth [33] token ex-
hanges. This token-based authentication causes long-haul communica-
ions, which result in large delays and user intervention for every step of
ack-end authentication. Also, each hub device has its own specification
or the authentication and interconnection, which leads to additional
urdens to other manufacturers/providers.

TwinPeaks can help devices authenticate and interconnect across
ach other for IoT services. It eliminates the communication overhead
f verification along the CA. Instead of the CA overhead, the verification
f a TwinPeaks public key is done with the known ID of the IoT device.
lso a TwinPeaks public key has a longer validity period and thus it is
ore cache-friendly compared to the PKI public key and certificate.

.1. IoT Scenario

Suppose that a house is configured with a smart hub device such as
 smart speaker, and we would like to add a new device such as a robot
acuum cleaner into the house. To make the hub and the new device set
p a secure association, each device needs to authenticate the other.

For the authentication, the current practice is that the authentica-
ion messages are exchanged between the remote servers. Each device
as been registered at the server of its domain, and the server han-
les authentication and interconnection between the two domains. This
ack-end model incurs large delays, and thus it may result in service
isruptions in IoT devices even if they are closely located.
4 The CNAME resource record from the DNS can be used to verify the delega-

ion (by the key server) to its corresponding CDN provider’s key server.

s

I

s

Instead of the back-end model, the direct authentication between
evices will reduce the delay substantially. In the Internet, we have wit-
essed a PKC-based authentication is viable for the direct authentica-
ion. Compared to the current PKI approaches, TwinPeaks has benefits
ver the scoping and scalability as described in Section 3 in the IoT
nvironments.

.2. ID Naming

In order to apply TwinPeaks into the IoT, the ID system needs to
e extended since some IoT devices do not have their own public IPv4
ddresses. If a device has a public IPv4 address, ID m

in Section 5.2 can
e used without any changes. Otherwise, when a device has a private
Pv4 address or it is intermittently connected to the Internet, a unique
alue of the IoT device (e.g., generated from MAC address, UUID, and
tc.) could be used for the ID construction.

When we use a unique value as an ID, the en-
ity m ’s identity for the secret value is given by
𝐷 𝑚 = domain-name || unique-value || h (params). Thus, if
ts domain name or unique value is changed, m should change its public
ey.

.2.1. Examples of unique value construction

Globally unique IPv6 address from the MAC address: If a public
Pv4 address is not allocated to an IoT device, the use of a globally
nique and routable IPv6 address is one of the options. For example, a
lobally unique IPv6 address can be generated from the modified EUI-64
ormat IID (interface identifier) with the given subnet prefix by SLAAC
stateless address autoconfiguration), when the device is connected to
he Internet through an IPv6-capable router [34] .

Unique local address of IPv6: Use of unique local address, which is
on-routable, is also viable approach because ID m

has a scope of unique
alue as the domain name. The pseudo-random global ID algorithm of
FC

[35] can be applied to construct the unique value for ID m

.
Personal IPv6 address: In a person-centric perspective, the ‘per-

onal IPv6 address’ for consumer-based business model [36] is an an-
ther candidate for the unique value of an IoT environment. Ganchev
nd O’Droma [36] proposed a locally-routable address scheme with NAT
ranslation at the egress router of access network providers for global
outing (if supported). The personal IPv6 address is constructed as 3
arts: class prefix, consumer ID, and assignable sub-address/ID. If an
oT network uses a consumer ID, an IoT device can have an assignable
ub-address as a natural transition from person-terminal concept of [36] .

.3. TwinPeaks-based authentication in IoT

TwinPeaks-based authentication in IoT is performed in five steps as
epicted in Fig. 3 . There are three entities involved: IoT devices, key
ervers, and a public registry such as the DNS. Suppose there are two
oT devices to be interconnected and they belong to two different IoT
omains. Let us describe the authentication process as an IoT device
 authentications the other one B . Cross-authentication can be done if
oth of the two devices execute the process.

Initialization: A key server within the IoT domain of device A pro-
ides the required parameters for the public key generation to IoT device
 . We assume that every IoT device has its authentication hint, which

s information that uniquely identifies the device itself, to be detailed in
ection 7.4 . And the authentication hint of device A is collected by the
ey server X . (Device B belongs to another domain, which performs the
ame initialization with the key server Y , independently.)

Discovery: We assume device A can find device B by soliciting B ’s
D and hash of the public key via local area wireless communications
uch as WiFi, Bluetooth, and ZigBee.

http://www.a.com
http://www.a.cdn1.com
http://www.a.com
http://www.a.cdn1.com

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

Fig. 3. Overview of TwinPeaks-based operations for IoT Au-

thentication.

fi

Y

t

Y

k

p

o

7

fi

d

m

t

d

a

s

m

a

p

p

i

m

p

c

t

l

7

b

i

u

d

s

d

m

r

c

b

f

t

u

d

8

8

8

s

s

c

r

n

o

p

m

i

o

s

s

a

h

d

a

h

n

a

k

D

a

8

q

c

w

A
Obtaining Domain Information: From the obtained ID of B, A can
gure out the domain of B . And then the contact point of B ’s key server
 would be obtained via a public registry, such as the DNS.

Obtaining Authentication Hint and Public Key: Device A verifies
he given ID of device B with the authentication hint from B ’s key server
. A also obtains the public parameters of key server Y and the public
ey of B .

Authentication: With the public key, the given ID, and the public
arameters of communicating peer, each device verifies the authenticity
f the other device by exchanging encrypted messages or signatures.

.4. Authentication hint and device profile

An authentication hint will be exchanged in a form of a device pro-
le. The authentication hint includes the data for identifying its IoT
evice, e.g., the date and time of its initialization, the MAC address, the
anufacturer-provided values, and/or the randomly-generated value at

he device bootstrapping. These values construct the unique ID of the
evice. Thus the device could be authenticated via the domain name
nd the valid authentication hints, by verifying the unique value con-
truction procedure.

Also, the device profile contains the information related to auto-
ated negotiation of available security levels. For example, types of

symmetric cryptography, types of symmetric cryptography, and their
arameters.

For authentication and encryption, the common subset of the two
rofiles will be used. The negotiation could fail, if the common subset
s empty, and thus the baseline profile is required. If there are two or
ore common candidate profiles, the choice will be made based on the
olicy of the IoT domain or the local administrator. The default policy
ould be choosing the strongest level of security. In order to compare
he candidate profiles, each cryptographic scheme provides the security
evel of the equivalent security level of symmetric cryptography.

.5. Public registry

TwinPeaks relies on DNS for a public registry. For the TwinPeaks-
ased application on IoT, DNS is also preferred to lookup the domain and
ts key server information timely, when an ID m

with the non-routable
nique value is used. However, DNS may not scale when the number of
omain names grows enormously, in case that the routable IP address,
uch as the globally unique IPv6 address, is used with ID m

.
Other than DNS, the blockchain (e.g., Namecoin [37]) may be a can-

idate solution for storing the domain name and its key server infor-
ation of the IoT devices with benefits of scalability and the following

easons. The data lookup within the blockchain takes the overhead of
onstantly tracing transaction records, compared to DNS. However, the
lockchain provides a tamper-evident history of the device-related in-
ormation, and thus it is robust against the forgery of the information. If
he IoT device cannot afford to have a computational power for looking
p the blockchain records, the device may delegate the lookups to its
omain key server which is a trusted entity.

. Security analysis

.1. Threat analysis

.1.1. Threat model

An adversary may launch the following attacks to masquerade a web-
ite. First, he or she may wish to compromise either a key or a DNS
erver. If he or she compromises both servers, then the attack is a suc-
ess. Second, he or she may make poisoning attacks on a DNS or a key
esolver.

Adversaries can be internal for the former attacks, and can be exter-
al for both kinds of attacks. An internal adversary has proper control
ver either a key server or a DNS server, but he or she wants to alter the
ublic key or DNS entries for obtaining access to the client-server com-
unication illegally. An external adversary has no legal control over the

nfrastructure, but he or she tries to gain control of either a key server
r a DNS server or to disguise a malicious host as an authentic one.

For the former type of attacks, it is assumed that an adversary can
uccessfully compromise only one entity: either a DNS server or a key
erver. We assume that the operation and management of the DNS hier-
rchy and the key server hierarchy are independent (as the DNS and CA
ierarchies are independent). He or she could start an attack inside the
omain (of the website) or manage to gain the access to the domain by
n advanced persistent threat (APT) [19] . For the latter type of attacks,
e or she may be located around the target client.

Also, we assume that Internet routing delivers a packet to its desti-
ation IP address correctly; IP prefix hijacking is thwarted by BGPSEC
nd so on. Note that TwinPeaks focuses on authentication and public
ey distribution. That is, we can rely on the existing mechanisms like
NSSEC and TLS to thwart man-in-the-middle attacks and down-grade
ttacks.

.1.2. Attack and analysis

Compromised key server: Suppose an adversary wishes to mas-
uerade a famous website with identifier ID A . Assume that he or she
ompromises the key server that is responsible for the public key of the
ebsite ID A , and forges its public key as 𝑃 ′

𝐴
with parameters 𝚙𝚊𝚛𝚊𝚖𝚜 𝐴 .

s the DNS server is not compromised, the client’s ciphertext 𝐶 =
1

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

𝐸

l

t
c

o

t

(

I

w

c

v

w

c

N

w

c

m

b

p

s

r

a

I

t

w

t

m

q

f

m

a

o

t

u

s

p

t

c

t

8

T

t

(

t

o

a

i

o

c

t

i

D

P

v

h

9

[

p

T

t

f

i

9

o

s

d

k

t

i

i

l

t

c

s

t

m

p

w

t

t

t

i

h

t

h

i

T

9

e

n

r

a

b

9

s

a

s

e

T

r

c

V

p

m

w

s

l
𝑛𝑐𝑟𝑦𝑝𝑡 (𝚙𝚊𝚛𝚊𝚖𝚜 𝐴 , 𝑚 1 , 𝑃
′
𝐴
, 𝐼𝐷 𝐴) , which is encrypted by the forged pub-

ic key 𝑃 ′
𝐴
, will be delivered to the authentic web server, where m 1 is

he client’s message. Now, the authentic web server cannot decrypt C 1

orrectly with the authentic public key P A , and hence the client figures
ut that the given public key is not valid.

Compromised DNS server: Likewise, if the corresponding DNS en-
ry is forged for a given website, or a DNS poisoning attack is successful
but the key server is not compromised), then the client has the wrong
P address and wrong identifier 𝐼𝐷

′
𝐵

but the valid public key P B of the
ebsite with parameters 𝚙𝚊𝚛𝚊𝚖𝚜 𝐵 from the key server hierarchy. The

lient’s ciphertext 𝐶 2 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝚙𝚊𝚛𝚊𝚖𝚜 𝐵 , 𝑚 2 , 𝑃 𝐵 , 𝐼𝐷

′
𝐵
) , encrypted by the

alid public key, will go to a wrong destination, possibly a spoofing host,
here m 2 is the client’s message. However, the spoofing host cannot de-

rypt C 2 correctly since it does not have the authentic private key S B .
ote that public key poisoning attacks are not possible since the client
ill know the public key of each key server along the key server hierar-

hy, and hence it will check the digital signature of each key response
essage.

Therefore, an impersonation attack in TwinPeaks is possible only if
oth the DNS server and the key server are compromised.

Compromised root key server: Root key servers are much more im-
ortant than lower level key servers since the resolution of a public key
tarts from a root key server. An adversary may try to compromise the
oot servers to forge the entire hierarchy. Some approaches can mitigate
ttacks or help defenses as follows.

Recall that a structure of TwinPeaks is multi-rooted in a global scale.
f a root key server is compromised, we assume that the adversary ob-
ains the secret key of the root key server. It is hard to distinguish
hether the root key server performs the normal or malicious opera-

ions. This vulnerability can be alleviated with cross-verification among
ultiple root key servers, which means that the client sends a key re-

uest message to multiple root key servers. By comparing the responses
rom the multiple root key servers, the evidence of one or more compro-
ised root key servers could be found. However, if all the root servers

re compromised, the attack is succeeded against the countermeasure
f cross-verification.

Also, root-targeting attacks could be neutralized via out-of-band dis-
ribution of the public keys of root servers. This approach is already in
se in the form of pre-distribution of root certificates in PKI, such as
oftware distribution of web browsers and operating systems.

Compromised root DNS server: Similarly with the case of com-
romised root key server, the root DNS servers are very important and
here is a risk to be attacked. However, in practice, they are hard to be
ompromised because they are well distributed and sustainable due to
echniques of anycast, caching, and redundancy.

.2. Certificateless validation of a public key

The validation of a public key of a named entity is performed in
winPeaks by two mechanisms: (i) encryption (and decryption) with
he pair of public and private keys including the form of signature, and
ii) the responses from the DNS and the public key servers. Recall that
he generation of a public/private key pair is linked with the identifier
f the entity.

As ID m

depends on its networking parameters, such as domain name
nd IP address, the correctness of the responses from the public reg-
stry (or the DNS) and the key servers are the basis of the validation. If
ne of the elements mentioned above is incorrect, the decryption of the
iphertext cannot be done succesfully. Note that the certificate valida-
ion is done by the issuer CA in the PKI, whereas the (key) validation
n TwinPeaks depends on the client and on the network infrastructure.
ependency on multiple entities for validation of a public key in Twin-
eaks helps detect invalid public keys and figure out the cause of the
alidation failures. In addition, modified TLS handshake messages can
elp explain the cause of invalidation (see Section 6.3.2).
. Evaluation

We compare TwinPeaks with the current PKI and IETF DANE
16,17] from qualitative and quantitative perspectives. Numerical ex-
eriments are conducted to show the feasibility and performance of
winPeaks in the Internet environments, where a client verifies the au-
henticity of a server. The TLS variant explained in Section 6.3.2 is used
or comparison purposes. With the PKI and DANE, the original TLS 1.2
s used for establishing secure connections.

.1. Qualitative comparison

TwinPeaks eliminates certificates, and hence removes the overhead
f certificate issuance and revocation. Instead, a domain has the respon-
ibility of keeping the IP addresses and public keys of its members up-to-
ate in its DNS and key servers, respectively. Each key server can issue
eys only to its members; thus the problem of the issuance of certificates
o arbitrary entities in the PKI is mitigated.

The IETF DANE standards address some of the PKI’s problems by
ncorporating the certificate of an entity into its DNS record. As DANE
ncorporates many of current PKI practices, the PKI-related problems
ike the overhead of revocation still remain. However, DANE can solve
he CA dependency if named entities decide to use self-signed certifi-
ates as TLSA records within the DNS entry. Furthermore, the usage of
elf-signed certificates in DANE can help limit the scope of key issuance
o the sub-domains of the current DNS entry.

While DANE may mitigate the risk of fraud certificates, the compro-
ise of the DNS server can result in spoofing attacks. In TwinPeaks, the
ublic keys are stored in separate physical servers from DNS servers,
hich makes the compromise of the DNS server independent of that of

he key server. DANE as well as the PKI cannot take advantage of long-
erm caching since certificates are to be fetched from the servers due
o the TLS, and if certificates are issued by CAs, they need to be val-
dated anyway. However, in DANE, only self-signed certificates (or its
ash values) can be cached.

We summarize the above comparison as well as the prior survey in
he literature. [38] surveyed and evaluated number of proposals for en-
ancing the PKI. Based on [38] and the aforementioned issues, qual-
tative comparison of TwinPeaks with the PKI and DANE is shown in
able 1 .

.2. Quantitative comparison

In order to examine the feasibility of the proposed architecture, we
valuate TwinPeaks with PKI and DANE. The evaluation pursue the fair-
ess by comparing different architectures, especially the point of occur-
ence in key distribution varies. We use the TLS handshake procedure
nd assume the DNSSEC deployment in comparing the three schemes
ecause DANE requires DNSSEC.

.2.1. Evaluation environments

To mirror a globally distributed network infrastructure, two cloud
ervice providers which are located in North America and East Asia
re used. Therefore the latencies among the client, the server (or web-
ite), the DNS servers, key servers, and CAs reflect global-scale Internet
nvironment by setting up physically-distant VMs. The VMs that run
winPeaks, PKI, and IETF DANE are chosen as one of medium-ranged

ecommendations of the cloud service providers; each VM has 2 virtual
ores and approximately 4 GB of main memory. If we use entry-level
Ms (which have lower priority), unstable performances like through-
ut instability and delay variations are reported [39] . By choosing the
edium-ranged VMs, the side effect of virtualization that affects net-
ork performance is reduced.

A hierarchical structure is applied to connect DNS servers and key
ervers, respectively. Three levels of DNS servers are deployed to emu-
ate the current DNS structure, which are the root, the TLD (e.g., .com),

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

Table 1

Comparison of TwinPeaks, PKI, and IETF DANE schemes is summarized. Properties that are fully/already supported

are denoted by • , while ones partially fulfilled are denoted by ∘. Note that • is always better than ∘, which in turn is

better than blank for each criterion.

PKI DANE TwinPeaks

(baseline) (key pinning at DNS)

Security Properties Offered against Certificate Forgery, CA Compromises, etc.

Detects MITM • •
Detects Local MITM • •
Updatable Pins • •
Responsive Revocation •
Intermediate CAs Visible •
Restricts Scope of Key Issuance • •
Reduces Key Retrieval Overhead with Cache ∘ •
No Revocation Overhead ∘ •
Easy Recovery of Spoofed Certificate/Key • •

Evaluation of Impact on HTTPS/TLS

Security & Privacy No New Trusted Entity • ∘
No New Traceability • • •
Reduces Traceability • • •
No New Authentication Tokens • •

Deployability No Server-Side Changes • ∘
Deployable without DNSSEC • •
No Extra Communications • •
Internet Scalable • • •

Usability No False-Rejects • • •
No New User Decisions • • •

a

i

E

i

a

m

t

l

D

o

f

a

i

l

s

l

b

f

9

r

q

h

s

o

c

t

t

N

fi

d

s

b

b

[

r

t

o

f

e

w

P

c

9

T

f

P

m

i

n

o

c

a

r

T

e

r

T

9

i

s

D

a

2

D

e

o

c

nd the second-level domain (e.g., example.com) name servers. A client
s located in East Asia, and hence the root name server is also located in
ast Asia to reflect the practice of IP anycasting. The TLD name server
s located in the Western coast of North America since we assume that
 generic TLD name server may be located there. The second-level do-
ain name server is located in East Asia again, assuming that the client

ries to set up a secure connection with a local content provider. The
ocations of the corresponding key servers are the same as those of the
NS servers, respectively.

We use BIND for the authoritative DNS server configuration with-
ut recursion, allowing DNSSEC and DANE features. BIND is also used
or a local DNS resolver, which is modified to indicate our root server
nd to allow recursive DNS queries. OpenSSL, an open-source SSL/TLS
mplementation, is used for the CA and its OCSP responder, which are
ocated in East Asia. Other required entities (such as the TwinPeaks key
ervers, the server, and the client) are prototyped with the following
ibraries. Bouncy Castle cryptographic APIs are used for the RSA-, ECC-
ased computations and TLS connection establishment. JPBC2 is used
or pairing-based cryptography (PBC).

.2.2. Evaluation methods

To compare TwinPeaks with the PKI and DANE, we measure the
esolution delay, which is the interval from the starting time of the DNS
uery of a client to the starting time of a TLS session setup. DNS server
ierarchy is configured as three-level domains, and it is mirrored by key
erver hierarchy. For PKI, an OCSP responder is set up for a CA operation
f public key verification. The local key resolver is co-located with the
lient for simplicity.

We consider two cases with respect to caching. First, we make all
he caches cleaned to measure the elapsed time with no cache hits. In
his case, all the required communications and computations take place.
ext, the client makes a connection (i.e., to the same server) again to
nd out the effectiveness of caching for each scheme. For both cases, we
o not activate (application level) content caching (e.g., web cache).

We carry out the experiments with the key length changed to ob-
erve the performance difference between RSA/ECC-based PKI, RSA-
ased DANE, and CL-PKC-based TwinPeaks. The matching key lengths
etween RSA, ECC and CL-PKC are determined based on the literature
40] as shown in Table 2 . We average the experimental results over 10
uns for each setting.
There are number of approaches in implementing CL-PKC [28] . Due
o the high complexity of bilinear pairing, we prefer approaches with-
ut pairing, e.g., the BSS formulation [24] , the LK formulation [25] ,
or comparison. Thus we adopt the YHD scheme [26] based on ECC in
valuation. Later, we also compare the two implementations of CL-PKC,
hich are denoted by TwinPeaks (PBC) and TwinPeaks (ECC). Note that
BC and ECC-related parameters are chosen based on [40–42] for the
omputational efficiency and flexibility.

.3. Numerical results

We measure the DNS resolution delay, authentication delay, other
LS connection setup delay, traffic for TLS connection setup, caching ef-
ects on key resolution, comparison of TwinPeaks implementations with
BC and ECC, and feasibility check for the IoT. Prior to the establish-
ent of secure connections, the client will access its local DNS resolver

n order to obtain the IP address corresponding to the given domain
ame (i.e., the server). In case of the PKI and DANE, only the DNS res-
lution is required before starting to set up a TLS connection. The TLS
onnection setup (i.e., TLS handshake) in the PKI and DANE includes
uthentication and symmetric key generation. In contrast, TwinPeaks
equires the explicit key resolution after the DNS resolution. Then, the
LS connection setup in TwinPeaks only includes symmetric key gen-
ration since the authentication (of the server) corresponds to the key
esolution. For the experiments below, the simplified TLS variant for
winPeaks is used (see Section 6.3.2).

.3.1. DNS Resolution delay

l
All the comparison settings require DNS resolution before establish-

ng a TLS connection. Therefore there is no difference across the three
chemes. For comparison with other delay components, we measure the
NS resolution delay as follows. We assume that all the DNS entries
re signed by DNSSEC, and the local DNS resolver is DNSSEC-enabled;
048-bit Zone Signing Keys and 4096-bit Key Signing Keys are used for
NSSEC. Even though TwinPeaks does not rely on DNSSEC, DNSSEC is
mployed for conservative comparison purposes. In the DNS resolution
f DANE, the hash value of the server’s certificate (not the full certifi-
ate) is used for faster resolution.

http://www.example.com

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

Table 2

Parameters of RSA and CL-PKC (elliptic-curve-based) algorithms are shown as the key size increases (which corre-

sponds to security levels). Unit is in bits.

Security Level RSA CL-PKC (EC) Size of Finite Size of Extended 𝜌 Embedding

(~ symmetric crypto) Key Size Key Size (log r) Field 𝔽 𝑞 (log q) Field 𝔽 𝑞 𝑘 (log q k) (log q /log r) Degree k

80 1024 160 512 1024 3.2 2

112 2048 224 1024 2048 4.6 2

128 4096 a 256 2048 4096 8 2

a As shown in [40] , RSA-equivalent key sizes are different depending on the references. For example, NIST rec-

ommends RSA 3072-bit key size and Lenstra recommends RSA 4440-bit key size for 128-bit security level. We use

4096-bit key size for RSA in this case.

Fig. 4. Average authentication delays of the PKI, DANE,

and TwinPeaks are analyzed (in ms) during/before the

TLS process.

o

l

w

t

a

9

f

k

T

i

o

D

i

f

b

a

d

f

i

P

c

c

u

i

C

a

f

c

t

s

h

c

t

t

p

t

t

t

W

(

c

l

t

D

2

s

c

i

h

O

g

i

D

a

t
The measured DNS resolution delay is significantly reduced in case
f cache hits within the DNS resolver. The average DNS resolution de-
ays are 168.5 ms for the cache hit and 1,382.7 ms for the cache miss,
hich shows over 8 times speedups with cache hits. This gap includes

he networking latencies between entities and delays for DNSSEC oper-
tions.

.3.2. Authentication delay

In TwinPeaks, the client obtains the public key of the domain name
rom the key server hierarchy; note that the DNS retrieval and the public
ey retrieval are performed in sequence. Due to the key resolution in
winPeaks, the authentication (i.e., certificate verification) in the TLS

s removed (Section 6.3.2). Thus we compare the authentication delays
f the three schemes in terms of certificate verification in both PKI and
ANE, and key resolution in TwinPeaks.

The measured authentication delays before/during the TLS process
s shown in Fig. 4 . The authentication delay is defined as the interval
rom the TLS initiation to the end of server authentication (i.e., right
efore sending a secret for the shared key setup at the client) for PKI
nd DANE. Overall, the measured results show small differences across
ifferent security levels, which means the most of the time is consumed
or networking.

Like the DNS resolution, the key resolution time of TwinPeaks (ECC)
s significantly reduced with cache hits in the key resolver. In Twin-
eaks, the average measured time for key resolution is 37.3 ms with
ache hits and the 80-bit security level. In comparison to cache-miss
ases of 470.9 ms, it is over 12 times speedups with cache hits.

Before analyzing the authentication delay of the other schemes, let
s detail the settings for Fig. 4 . OCSP and CRL are used for validat-
ng certificates in the PKI, which might incur delays due to visits to
As (compared to DANE and TwinPeaks). In this experiment, OCSP is
dopted for certificate validation in the PKI and we consider the two
ollowing cases. (i) The client visits the OCSP server only once; this case
orresponds to the ‘w/ OCSP RTT’ part in Fig. 4 . (ii) In some servers,
hey adopt OCSP stapling, where an OCSP response message (for the
erver’s certificate) signed by its CA is sent by the server during the TLS
andshake. Then the client does not have to visit the OCSP server; this
ase corresponds to ‘w/o OCSP RTT’ part in Fig. 4 . Similarly, there are
wo cases as to DANE. (i) The client visits the DNS server once again
o retrieve the TLSA record; this case corresponds to the ‘w/ TLSA RTT’
art in Fig. 4 . (ii) The client has the information (e.g., CRL preloading)
hat can verify the authenticity of the server’s certificate without visiting
he CA; this case corresponds to the ‘w/o TLSA RTT’ part in Fig. 4 .

The authentication delays of PKI (RSA and ECC) in cases of visiting
he CA are comparable to those of TwinPeaks (ECC) with cache misses.

hen we see the 2nd case of PKI (i.e., not visiting the CA), TwinPeaks
ECC) with cache hits shows substantial gains in terms of the authenti-
ation delay.

In DANE results, the authentication delays of the 2nd case are slightly
ess than those of the 1st case (visiting the CA once). The reason why the
wo cases shows small difference is that the difference comes from the
NS resolution for DANE authentication (TLSA) which takes less than
0 ms regardless of settings. Again, TwinPeaks (ECC) with cache hits
hows better performance compared with DANE in the 2nd case.

Notably, the authentication delay of the PKI is not necessarily in-
reased as the security level increases. The reason is that the network-
ng delays for an OCSP response are long and somewhat unstable, and
ence the time to verify signatures takes a small portion (the ‘PKI w/o
CSP RTT’ part in Fig. 4). DANE has an advantage to the PKI with re-
ard to the server authentication since the TLSA record can be cached
n the local DNS resolver. That is, DANE requires the client to visit the
NS to retrieve the TLSA record once; the two entities (i.e., the client
nd the local DNS resolver) are co-located in East Asia, which explains
he smaller RTT than that of the PKI in Fig. 4 . Right after receiving the

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

Fig. 5. Average of post-authentication TLS connection setup delays of the three

schemes are compared (in ms).

s

(

m

i

[

i

d

r

i

9

t

t

p

d

c

m

t

d

s

T

n

k

e

s

9

n

N

k

m

t

E

e

r

t

c

f

T

9

D

c

n

P

p

p

u

h

p

[

i

i
w

e

𝑡

w

t

f

t

D

a

T

l

m

9

m

t

a

f

t

g

o

t

P

w

e

c

f

t

[

9

r

a

m

(

a

t

2

S

l

t

a

a
erver certificate, the client in DANE can compare the TLSA record with
the hash of) the received certificate.

The key resolution delay of TwinPeaks (ECC) in case of cache hits is
uch shorter than the authentication delays of the other schemes. Also,

t achieves less than 503.5 ms delay even with cache misses since ECC
26] helps reduce the complexity of signature verification.

We perform the key resolution after the DNS processing in TwinPeaks
s finished in the experiments. However, note that the key resolution
elay can partially overlap with the DNS resolution delay, which will
educe the delay. In Section 10.1 , performing two resolutions in parallel
s discussed.

.3.3. Post-authentication TLS connection setup delay

We next measure the other delay of TLS connection setup (except au-
hentication), which is mainly the time to set up a shared key between
he client and the server. The TLS variant for TwinPeaks is slightly sim-
lified from the original TLS (See Section 6.3), which results in shorter
elay. While the TLS for TwinPeaks can be further simplified (e.g., en-
rypting ClientHello with the server’s key), we retain most of the TLS
essages in the experiments for fair comparison.

Fig. 5 shows the average delay of the shared key setup. All the set-
ings are the same as for authentication delay. Note that the key setup
elay is not necessarily increased as the security level becomes stronger
ince the networking latencies take a significant portion. Even though
winPeaks shows the shortest delay compared to other schemes, it does
ot mean that TwinPeaks is more efficient than others in the shared
ey setup. It comes from the simplification of key setup in Fig. 2 . It is
xpected that TwinPeaks shows similar tendency with other ECC-based
chemes unless TwinPeaks uses the simplified key setup.

.3.4. Traffic generated during TLS connection setup

Fig. 6 compares the amount of traffic generated during the TLS con-
ection setup (including authentication and the shared key generation).
ote that the traffic between the client and the key server is for public
ey resolution with cache hits. For the PKI and DANE, RSA-based imple-
entations generate more traffic than ECC-based ones. It implies that

he smaller key size of ECC has a benefit in terms of the traffic amount.
ven with the public key resolution traffic, TwinPeaks shows the small-
st traffic for the TLS connection setup among the three schemes.

Overall, TwinPeaks achieves the shortest delay in terms of the key
esolution (i.e., authentication) and the minimum traffic. These advan-
ages result mostly from the caching-friendly resolution and ECC-based
ryptographic operations. From now on, we investigate (i) caching ef-
ects on key resolution and (ii) the effect of two implementations of
winPeaks.
.3.5. Caching effects on key resolution

Basically, the local key resolver of TwinPeaks operates like the local
NS resolver when looking at the lookup sequence along the hierar-
hical tree. However, the caching operations of the two resolvers are
ot exactly the same, mainly due to TTL (Time-to-Live) settings of DNS.
ublic keys of TwinPeaks can be cached until the public key or public
arameters are updated, which implies potentially long term caching of
ublic keys. Obviously, Jung et al. [43] showed that increasing TTL val-
es leads to increasing hit rates of the DNS cache. Thus, using the cache
it rate of DNS can be viewed as a lower bound of the cache hit rate of
ublic keys in TwinPeaks.

The cache hit rates of DNS are known as very high. In KAIST traces
43] , the hit rates are in the range of 70% to 90% in most settings. Also
n NLANR traces [44] , the hit rates ranges from 70% to 96% approx-
mately. Thus, we calculate the expected delay of key resolution t avg

ith the hit rate r hit in the range of 70% to 95% using the following
quation:

 𝑎𝑣𝑔 = 𝑟 ℎ𝑖𝑡 ⋅ 𝑡 ℎ𝑖𝑡 + (1 − 𝑟 ℎ𝑖𝑡) ⋅ 𝑡 𝑚𝑖𝑠𝑠 (1)

here t hit and t miss are the delays with cache hits and misses, respec-
ively.

Fig. 7 shows the expected delay of key lookup to see the cache ef-
ectiveness using Eq. (1) . The lookup delays of TwinPeaks (ECC) lie be-
ween 59.0 ms and 167.2 ms. In comparison to the DNS resolution with
NSSEC in Section 9.3.1 , all of the lookup delays of TwinPeaks (ECC)
re less than those of the DNSSEC case with cache hits, except when
winPeaks (ECC) is tested with 70% hit rate and the 128-bit security

evel. In most of the cases, TwinPeaks (ECC) shows competitive perfor-
ance in key resolution if caching is effective.

.3.6. Comparison of two implementations of TwinPeaks

Fig. 8 compares the delays of cryptographic primitives in two imple-
entations of TwinPeaks: PBC and ECC. In the ECC algorithm of CL-PKC,

he computation time increases slightly with increasing security levels
nd all the primitives are finished less than 38 ms. In contrast, the time
or the PBC algorithm are measured longer than the ECC algorithm and
he measured time grows exponentially. Note that the y-axis of Fig. 8 is
iven in log-scale.

In order to discuss the cause of soaring, let us explain the parameters
f the PBC implementation briefly since those of the ECC implementa-
ion are from [41] . As shown in Table 2 , the key size for CL-PKC (both
BC and ECC) is two times the number of bits of the security level,
hich is the subgroup size r [42] . The extension field size q k should be
qual to the RSA key size, and the embedding degree k is 2 with the
hosen elliptic curve [45] . Thus, we choose q to be 512, 1024, 2048 bits
or the 80, 112, 128 security levels, respectively. It makes the parame-
er 𝜌 (= log 𝑞∕ log 𝑟) increase, which leads to slow computations of PBC
42] .

.4. Feasibility check for the IoT

In order to confirm the feasibility of TwinPeaks for the IoT envi-
onments, the prototype of TwinPeaks for IoT is implemented with C
nd OpenSSL instead of Java and Bouncy Castle, considering the perfor-
ance limitations of IoT devices. The prototyping device is Raspberry Pi

RPi) 3, with Raspbian OS. We set two RPis to play the roles of a client
nd a server, respectively. We call the client as a challenger which tries
o authenticate the other device, the server. The ECC key size is set to
56 bits, which indicates 128-bit of the security level as described in
ection 9.2.1 . We assume that DNS resolution and authentication de-
ays are similar to the measured results in Section 9.3 , where we deploy
he DNS and key servers as described in Section 9.2.1 .

We see that the networking delay takes the most of the time for the
uthentication delay, but the signature verification may take different
mounts of time with the IoT device. It is measured as 14.68 ms on

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

Fig. 6. Amounts of traffic generated by TLS connection setup

of the three schemes with cache hits are compared (in Bytes).

Fig. 7. Expected delays of the key resolution are plotted as the cache hit rate

increases (in ms).

a

r

f

t

a

c

0

l

(

s

1

1

a

T

a

r

l

e

r

t

f
verage at the tested device, which is comparable to the ‘Cache Hit’
esult of TwinPeaks (ECC) in Fig. 4 .

For the post-authentication delay, we assume a simple procedure
or the IoT environment. An ECDHE key exchange is performed for es-
ablishing a common symmetric key. It takes 284.01 ms at the client
nd 211.89 ms at the server. Within the key exchange, the time for en-
ryption takes 0.02 ms at the client and the time for decryption takes
.03 ms at the server. The result shows that the post-authentication de-
ay in the IoT environments takes longer than that of the ‘TwinPeaks
ECC)’ result in Fig. 5 ; however, it is comparable to those of the other
chemes.

0. Discussions

0.1. DNS and key resolutions in parallel

There are two kinds of resolutions in TwinPeaks: an IP address and
 public key, which are performed one by one in the vanilla TwinPeaks.
he reason for the sequential resolution of IP addresses (from the DNS)
nd keys (from the key server hierarchy) is that the response of DNS
esolution (i.e., an IP address) is one of input components for key reso-
ution. Thus the entire resolution consists of repetitive request-response
xchanges along the DNS and key server hierarchies, and cache hits will
educe the number of exchanges.

While we adopt the sequential resolution in the experimental set-
ings, a significant portion of the key resolution process can be per-
ormed in parallel with the DNS resolution. Suppose a client wishes to
Fig. 8. Delays for cryptographic primitives of two implemen-

tations of TwinPeaks are plotted (in ms).

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

o

I

a

o

k

T

m

h

I

m

t

m

1

k

t

t

b

F

s

p

l

W

k

p

D

t

a

A

l

D

i

t

C

t

n

J

S

e

t

K

o

A

c

f

m

t

s

s

f

I

s

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
btain the IP address and the public key of a server mail.example.com .
t can request the IP address of mail.example.com to the DNS resolver,
nd the public key and public parameters of the key server in charge
f example.com to the key resolver simultaneously. Note that the
ey resolver will contact the key server of .com to obtain these data.
hen the client requests the key resolver to obtain the public key of
ail.example.com by sending its IP address, the domain name, and the
ash of the public parameters just received. The reason for sending the
P address of mail.example.com is that a single domain name may have
ultiple IP addresses as aforementioned. Finally, the key resolver con-

acts the key server of example.com to retrieve the public key of
ail.example.com .

1. Conclusions

We proposed TwinPeaks, a new infrastructure of providing public
eys to address the problems of the PKI like CA compromises and cer-
ificate revocation. TwinPeaks took a new approach by removing cer-
ificates and hence the PKI. Instead, it distributes public keys online
y constructing a DNS-like hierarchical structure of public key servers.
or the IoT devices, TwinPeaks is applicable by extending the naming
cheme. TwinPeaks can thwart spoofing attacks as well as the single
oint of compromise by making each named entity generate its pub-
ic/private key pair as a function of its domain name and IP address.

e also explained how the compromise of a single node like a public
ey server or a DNS server in TwinPeaks cannot lead to successful im-
ersonation attacks. We compared TwinPeaks with the current PKI and
ANE from both the qualitative and the quantitative perspectives. For

he latter comparison, we implemented TwinPeaks, PKI, and DANE on
 cloud service-based testbed that spans over North America and East
sia. Comprehensive experiments showed that TwinPeaks can achieve

ess delays and smaller traffic than the other schemes.

eclaration of Competing Interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

RediT authorship contribution statement

Eunsang Cho: Conceptualization, Methodology, Software, Valida-
ion, Formal analysis, Investigation, Data curation, Writing - origi-
al draft, Visualization, Project administration, Funding acquisition.
eongnyeo Kim: Resources, Funding acquisition. Minkyung Park:

oftware, Validation, Investigation, Data curation, Writing - review &
diting, Visualization. Hyeonmin Lee: Software, Validation, Investiga-
ion. Chorom Hamm: Validation. Soobin Park: Validation. Minhyeok

ang: Validation. Ted Taekyoung Kwon: Conceptualization, Method-
logy, Writing - review & editing, Supervision, Funding acquisition.

cknowledgement

This work was supported by Institute for Information & communi-
ations Technology Promotion (IITP) (grant no. 2018-0-00231) grant
unded by the Korea government (MSIT) (No.2018-0-00231, Develop-
ent of context adaptive security autonomous enforcement technology

o prevent spread of IoT infrastructure attacks). Also, this research was
upported by Basic Science Research Program through the National Re-
earch Foundation of Korea (NRF) (grant no. 2017R1A6A3A11032626)
unded by the Ministry of Education (2017R1A6A3A11032626). The
CT at Seoul National University provides research facilities for this
tudy.
upplementary material

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.comnet.2020.107268 .

eferences

[1] P. Eckersley, Iranian hackers obtain fraudulent HTTPS certificates:
how close to a web security meltdown did we get?, 2011. URL
https://www.eff.org/deeplinks/2011/03/iranian-hackers-obtain-fraudulent-https .

[2] T. Sterling, Second firm warns of concern after dutch hack, 2011, URL
http://news.yahoo.com/second-firm-warns-concern-dutch-hack-215940770.html .

[3] N. Falliere, L. Murchu, E. Chien, W32.Stuxnet Dossier, 2011, URL
http://www.symantec.com/content/en/us/enterprise/media/security_response/
whitepapers/w32_stuxnet_dossier.pdf .

[4] A. Delignat-Lavaudz , M. Abadiy , A. Birrelly , I. Mironovy , T. Wobbery , Y. Xie , Web
PKI: closing the gap between guidelines and practices, NDSS 2014, 2014 .

[5] J. Sunshine , S. Egelman , H. Almuhimedi , N. Atri , L.F. Cranor , Crying wolf: an empir-
ical study of SSL warning effectiveness, in: USENIX security symposium, Montreal,
Canada, 2009, pp. 399–416 .

[6] S. Farrell, Not reinventing PKI until we have something better, IEEE Internet Comput.
15 (5) (2011) 95–98, doi: 10.1109/MIC.2011.120 .

[7] H. Tschofenig, J. Arkko, D. Thaler, D.R. McPherson, Architectural considera-
tions in smart object networking, 2015, (RFC 7452). 10.17487/RFC7452URL
https://rfc-editor.org/rfc/rfc7452.txt .

[8] B. Laurie, A. Langley, E. Kasper, Certificate Transparency, 2013, (RFC 6962).
10.17487/RFC6962URL: https://rfc-editor.org/rfc/rfc6962.txt .

[9] P. Eckersley, The sovereign keys project, 2012, URL:
https://git.eff.org/?p = sovereign-keys.git;a = blob;f = sovereign-key-design.txt;
hb = master .

10] T.H.-J. Kim , L.-S. Huang , A. Perrig , C. Jackson , V. Gligor , Accountable key infras-
tructure (AKI): A proposal for a public-key validation infrastructure, in: WWW 2013,
Republic and Canton of Geneva, Switzerland, 2013, pp. 679–690 .

11] L. Dykcik, L. Chuat, P. Szalachowski, A. Perrig, BlockPKI: an automated,
resilient, and transparent public-key infrastructure, in: 2018 IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW), 2018, pp. 105–114,
doi: 10.1109/ICDMW.2018.00022 .

12] R. Barnes, J. Hoffman-Andrews, D. McCarney, J. Kasten, Automatic certificate
management environment (ACME), 2019, (RFC 8555). 10.17487/RFC8555URL:
https://rfc-editor.org/rfc/rfc8555.txt .

13] S. Rose, M. Larson, D. Massey, R. Austein, R. Arends, DNS security in-
troduction and requirements, 2005a, (RFC 4033a). 10.17487/RFC4033URL:
https://rfc-editor.org/rfc/rfc4033.txt .

14] S. Rose, M. Larson, D. Massey, R. Austein, R. Arends, Resource records for
the DNS security extensions, 2005b, (RFC 4034b). 10.17487/RFC4034URL:
https://rfc-editor.org/rfc/rfc4034.txt .

15] S. Rose, M. Larson, D. Massey, R. Austein, R. Arends, Protocol modifications
for the DNS security extensions, 2005c, (RFC 4035c). 10.17487/RFC4035URL:
https://rfc-editor.org/rfc/rfc4035.txt .

16] R. Barnes, Use cases and requirements for DNS-based authentication
of named entities (DANE), 2011, (RFC 6394). 10.17487/RFC6394URL:
https://rfc-editor.org/rfc/rfc6394.txt .

17] P.E. Hoffman, J. Schlyter, The DNS-based authentication of named entities
(DANE) transport layer security (TLS) protocol: TLSA, 2012, (RFC 6698).
10.17487/RFC6698URL: https://rfc-editor.org/rfc/rfc6698.txt .

18] E. Cho, M. Park, T.T. Kwon, TwinPeaks: a new approach for certificateless public key
distribution, in: 2016 IEEE Conference on Communications and Network Security
(CNS), 2016, pp. 10–18, doi: 10.1109/CNS.2016.7860465 .

19] R. Oppliger, Certification authorities under attack: a plea for certificate legitimation,
Internet Comput. IEEE 18 (1) (2014) 40–47, doi: 10.1109/MIC.2013.5 .

20] L.S. Huang, A. Rice, E. Ellingsen, C. Jackson, Analyzing forged SSL certificates in
the wild, in: 2014 IEEE Symposium on Security and Privacy, 2014, pp. 83–97,
doi: 10.1109/SP.2014.13 .

21] C. Brubaker, S. Jana, B. Ray, S. Khurshid, V. Shmatikov, Using frankencerts for
automated adversarial testing of certificate validation in SSL/TLS implementa-
tions, in: 2014 IEEE Symposium on Security and Privacy, 2014, pp. 114–129,
doi: 10.1109/SP.2014.15 .

22] P. Gutmann, PKI: It’s not dead, just resting, Computer 35 (8) (2002) 41–49,
doi: 10.1109/MC.2002.1023787 .

23] S. Al-Riyami, K. Paterson, Certificateless public key cryptography, in: C.-S. Laih
(Ed.), Advances in Cryptology - ASIACRYPT 2003, LNCS, vol. 2894, Springer, 2003,
pp. 452–473, doi: 10.1007/978-3-540-40061-5_29 .

24] J. Baek , R. Safavi-Naini , W. Susilo , Certificateless public key encryption without
pairing, in: J. Zhou, J. Lopez, R.H. Deng, F. Bao (Eds.), Information Security, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 134–148 .

25] J. Lai , W. Kou , Self-generated-certificate public key encryption without pairing, in:
T. Okamoto, X. Wang (Eds.), Public Key Cryptography – PKC 2007, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 476–489 .

26] X. Yao, X. Han, X. Du, A light-weight certificate-less public key cryptography scheme
based on ECC, in: ICCCN 2014, 2014, pp. 1–8, doi: 10.1109/ICCCN.2014.6911773 .

27] D. Boneh, M. Franklin, Identity-based encryption from the weil pairing, in: J. Kilian
(Ed.), Advances in Cryptology — CRYPTO 2001, LNCS, vol. 2139, Springer, 2001,
pp. 213–229, doi: 10.1007/3-540-44647-8_13 .

28] A.W. Dent, A survey of certificateless encryption schemes and security models, Int.
J. Inf. Secur. 7 (5) (2008) 349–377, doi: 10.1007/s10207-008-0055-0 .

http://www.mail.example.com
http://www.mail.example.com
http://www.mail.example.com
http://www.mail.example.com
http://www.mail.example.com
https://doi.org/10.1016/j.comnet.2020.107268
https://www.eff.org/deeplinks/2011/03/iranian-hackers-obtain-fraudulent-https
http://news.yahoo.com/second-firm-warns-concern-dutch-hack-215940770.html
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0002
https://doi.org/10.1109/MIC.2011.120
https://rfc-editor.org/rfc/rfc7452.txt
https://rfc-editor.org/rfc/rfc6962.txt
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=master
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0004
https://doi.org/10.1109/ICDMW.2018.00022
https://rfc-editor.org/rfc/rfc8555.txt
https://rfc-editor.org/rfc/rfc4033.txt
https://rfc-editor.org/rfc/rfc4034.txt
https://rfc-editor.org/rfc/rfc4035.txt
https://rfc-editor.org/rfc/rfc6394.txt
https://rfc-editor.org/rfc/rfc6698.txt
https://doi.org/10.1109/CNS.2016.7860465
https://doi.org/10.1109/MIC.2013.5
https://doi.org/10.1109/SP.2014.13
https://doi.org/10.1109/SP.2014.15
https://doi.org/10.1109/MC.2002.1023787
https://doi.org/10.1007/978-3-540-40061-5_29
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0013
https://doi.org/10.1109/ICCCN.2014.6911773
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/s10207-008-0055-0

E. Cho, J. Kim and M. Park et al. Computer Networks 175 (2020) 107268

[

[

[

[
[

[

[

[

[
[

[

[

[

[

[

[

[

29] D.E.E. 3rd, O. Gudmundsson, P.A. Vixie, B. Wellington, Secret key transac-
tion authentication for DNS (TSIG), 2000, (RFC 2845). 10.17487/RFC2845URL:
https://rfc-editor.org/rfc/rfc2845.txt .

30] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, J. Wu, When HTTPS meets CDN: a
case of authentication in delegated service, in: IEEE S&P 2014, 2014, pp. 67–82,
doi: 10.1109/SP.2014.10 .

31] Amazon echo, echo plus, and echo dot, URL:
https://www.amazon.com/b/?ie = UTF8&node = 9818047011 .

32] Google homeURL: https://store.google.com/product/google_home .
33] W. Denniss, J. Bradley, OAuth 2.0 for Native Apps, 2017, (RFC 8252).

10.17487/RFC8252URL: https://rfc-editor.org/rfc/rfc8252.txt .
34] D.S.E. Deering, B. Hinden, IP Version 6 addressing architecture, 2006, (RFC

4291).URL https://rfc-editor.org/rfc/rfc4291.txt 10.17487/RFC4291.
35] B. Haberman, B. Hinden, Unique Local IPv6 Unicast Addresses, 2005, (RFC 4193).

10.17487/RFC4193URL: https://rfc-editor.org/rfc/rfc4193.txt .
36] I. Ganchev, M. O’Droma, New personal IPv6 address scheme and universal CIM card

for UCWW, in: 2007 7th International Conference on ITS Telecommunications, 2007,
pp. 1–6, doi: 10.1109/ITST.2007.4295898 .

37] NamecoinURL: https://www.namecoin.org/ .
38] J. Clark, P. van Oorschot, SoK: SSL and HTTPS: Revisiting past challenges and evalu-

ating certificate trust model enhancements, in: Security and Privacy (SP), 2013 IEEE
Symposium on, 2013, pp. 511–525, doi: 10.1109/SP.2013.41 .

39] G. Wang, T. Ng, The impact of virtualization on network performance of amazon EC2
data center, in: INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1–9, doi: 10.1109/IN-
FCOM.2010.5461931 .

40] S.D. Galbraith, K.G. Paterson, N.P. Smart, Pairings for cryptographers, Discrete Appl.
Math. 156 (16) (2008) 3113–3121 https://doi.org/10.1016/j.dam.2007.12.010 .

41] FIPS PUB 186-4. Digital signature standard (DSS), National Institute of Standards
and Technology (NIST) (2000).

42] D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves, J.
Cryptol. 23 (2) (2010) 224–280, doi: 10.1007/s00145-009-9048-z .

43] J. Jung, E. Sit, H. Balakrishnan, R. Morris, DNS performance and the ef-
fectiveness of caching, Netw. IEEE/ACM Trans. 10 (5) (2002) 589–603,
doi: 10.1109/TNET.2002.803905 .

44] C.E. Wills , H. Shang , The Contribution of DNS Lookup Costs to Web Object Retrieval,
Technical Report, Worcester Polytechnic Institute, 2000 .

45] M. Scott, Computing the tate pairing, in: A. Menezes (Ed.), Topics in Cryptology
— CT-RSA 2005, Lecture Notes in Computer Science, vol. 3376, Springer Berlin
Heidelberg, 2005, pp. 293–304, doi: 10.1007/978-3-540-30574-3_20 .

Eunsang Cho received his B.S. and Ph.D. in computer sci-
ence and engineering from Seoul National University. He is
currently a postdoctoral researcher at Seoul National Univer-
sity. His research interests include network security, Internet-
of-Things, blockchain, content-centric, and peer-to-peer net-
working.

Jeongnyeo Kim received her MS degree and Ph.D. in Com-
puter Engineering from Chungnam National University, Ko-
rea, in 2000 and 2004, respectively. She studied at computer
science from the University of California, Irvine, USA in 2005.
Since 1988, she has been a principal member of engineering
staff at the Electronics and Telecommunications Research In-
stitute (ETRI). Her research interests include mobile security,
secure operating system, network security and system secu-
rity.

Minkyung Park received her B.S. degree in computer sci-
ence from Korea Aerospace University, Korea, in 2014. She
is currently working toward her Ph.D. degree at the School
of Computer Science and Engineering, Seoul National Univer-
sity. Her research interests include network security, privacy,
anonymity, and blockchain.
Hyeonmin Lee received his B.S. degree in computer science
and engineering from Seoul National University. He is cur-
rently working toward his Ph.D. degree at Seoul National Uni-
versity. His research interests include network security.

Chorom Hamm received her BS degree in Computer Engi-
neering from Soongsil University, South Korea, in 2006. She
also got a master of Science in Information Technology from
Carnegie Mellon University, USA, in 2011. She worked for
Samsung Electronics and SK as a software engineer in South
Korea, and she is currently attending a Ph.D course in School
of Computer Science and Engineering at Seoul National Uni-
versity since 2018. Her research interests include mobile com-
puting, security, and context-awareness.

Soobin Park received her BS degree in Computer Engineering
from Hanyang University, Korea, in 2013. She has been a soft-
ware engineer at the Samsung Electronics since 2013, and she
is attending a master’s course in School of Computer Science
and Engineering at Seoul National University since 2017. Her
research interests include network security, blockchain, and
system security.

Sungmin Sohn received her B.S. degree in computer science
and engineering from Ewha Womans University. She is attend-
ing a master’s course in School of computer science and engi-
neering at Seoul National University since 2017. Her research
interests include network security and web security.

Minhyeok Kang received his B.S. in computer science and
engineering from Seoul National University, Korea, in 2017.
He is currently an M.S. student at Seoul National University.
His research interests include network security.

Ted “Taekyoung ” Kwon received the BS, MS, and PhD de-
grees from Seoul National University (SNU) in 1993, 1995,
and 2000, respectively. He is a professor with the Department
of Computer Science and Engineering, Seoul National Univer-
sity. Before joining SNU, he was a postdoctoral research as-
sociate at the University of California Los Angeles and City
University New York. During his graduate program, he was a
visiting student at the IBM T.J. Watson Research Center and
at the University of North Texas. He was a visiting professor at
Rutgers University in 2010. His research interest lies in future
Internet, network security, and wireless networks.

https://rfc-editor.org/rfc/rfc2845.txt
https://doi.org/10.1109/SP.2014.10
https://www.amazon.com/b/?ie=UTF8\04526node=9818047011
https://store.google.com/product/google_home
https://rfc-editor.org/rfc/rfc8252.txt
https://rfc-editor.org/rfc/rfc4291.txt
https://rfc-editor.org/rfc/rfc4193.txt
https://doi.org/10.1109/ITST.2007.4295898
https://www.namecoin.org/
https://doi.org/10.1109/SP.2013.41
https://doi.org/10.1109/INFCOM.2010.5461931
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1007/s00145-009-9048-z
https://doi.org/10.1109/TNET.2002.803905
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31405-1/sbref0025
https://doi.org/10.1007/978-3-540-30574-3_20

	TwinPeaks: An approach for certificateless public key distribution for the internet and internet of things
	1 Introduction
	2 Related work
	3 Design rationale
	4 Background: Certificateless public key cryptography (CL-PKC)
	5 How TwinPeaks works
	5.1 TwinPeaks design
	5.1.1 Key server
	5.1.2 DNS and key server hierarchy
	5.1.3 Message types
	5.1.4 In-depth operations

	5.2 CL-PKC as a building block

	6 Operation and deployment of TwinPeaks
	6.1 Public key update
	6.1.1 Update cases
	6.1.2 Update as implicit revocation

	6.2 Public key caching
	6.3 Deployment
	6.3.1 Island approach
	6.3.2 TLS Variant
	6.3.3 Consideration of the Internet practice

	7 Applying TwinPeaks into IoT environments
	7.1 IoT Scenario
	7.2 ID Naming
	7.2.1 Examples of unique value construction

	7.3 TwinPeaks-based authentication in IoT
	7.4 Authentication hint and device profile
	7.5 Public registry

	8 Security analysis
	8.1 Threat analysis
	8.1.1 Threat model
	8.1.2 Attack and analysis

	8.2 Certificateless validation of a public key

	9 Evaluation
	9.1 Qualitative comparison
	9.2 Quantitative comparison
	9.2.1 Evaluation environments
	9.2.2 Evaluation methods

	9.3 Numerical results
	9.3.1 DNS Resolution delay
	9.3.2 Authentication delay
	9.3.3 Post-authentication TLS connection setup delay
	9.3.4 Traffic generated during TLS connection setup
	9.3.5 Caching effects on key resolution
	9.3.6 Comparison of two implementations of TwinPeaks

	9.4 Feasibility check for the IoT

	10 Discussions
	10.1 DNS and key resolutions in parallel

	11 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	Supplementary material
	References

