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Abstract—Distributed Denial-of-Service (DDoS) attacks have
remained a significant threat to the Internet for years. One
strategy for mitigating these attacks involves requiring clients
to solve cryptographic puzzles to control the rate of incoming
traffic to a target server. For such a puzzle-based DDoS defense
mechanism to be effective, it necessitates robust methods for both
distributing puzzles to clients and adjusting puzzle difficulty. In
this paper, we introduce a puzzle-based DDoS defense mecha-
nism, DDD, which utilizes the Domain Name System (DNS) for
distributing puzzles to clients. The target server disseminates
its puzzles by publishing them as a DNS record through its
authoritative name server, distributing puzzles to clients via
their DNS resolvers. Our design incorporates a monitoring
server that continuously monitors incoming traffic to the target
and dynamically adjusts puzzle difficulty based on the traffic
originating from each Autonomous System (AS). This enables
AS-specific puzzle difficulty customization, and consequently,
traffic control. We have implemented our design into the Linux
kernel and showcased its effectiveness in traffic control through
prototype-based and controlled experiments.

Index Terms—Distributed Denial-of-Service, Domain Name
System, Client Puzzle

I. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks have been a
persistent and substantial threat to the security of Internet
infrastructure over a couple of decades. Such attacks are
orchestrated with the intent to render a victim (e.g., machine
or network resources) inaccessible to its users, often driven by
motives such as extortion, revenge, or political agendas [30],
[7], [16], [36], [14]. Even DDoS-as-a-service has become
available, enabling on-demand DDoS attacks [29]. Notably,
the frequency and intensity of DDoS attacks are increasing,
with 7.9 million attacks recorded in 2023, marking a 31%
increase from the previous year [20].

To mitigate DDoS attacks, various defense mechanisms
have been introduced, categorized by multiple criteria [40]. Let
us first categorize the DDoS countermeasures based on their
deployment locations. Source-based approaches [17], [18] try
to perform countermeasures near the sources of an attack
(e.g., at routers near bots) by monitoring traffic in a network.
However, detecting attack traffic near its sources presents a
challenge, as the volume typically remains insignificant until
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it accumulates along the paths toward the victim. Destination-
based approaches [6], [2], [33], [15] try to mitigate the attack
traffic near a victim. These countermeasures usually cannot be
triggered before the attack traffic reaches a victim, resulting
in a waste of resources along the paths to the victim.

As cloud computing becomes increasingly popular and cost-
effective, cloud-based DDoS protection services [12] have
gained significant momentum. Such service providers rely
on globally deployed servers (e.g., edge servers in content
delivery networks) to absorb and filter suspicious traffic,
forwarding only legitimate (or “scrubbed”) traffic to the target
server. However, the details of how to mitigate and filter
the attack traffic are not publicly disclosed. Considering that
a cloud network intervenes between the sources and the
destination, we could classify such proposals as a network-
based approach. Other network-based approaches [5], [22],
[23], [19] exist, but these methods often require significant
storage and processing overheads at routers, rendering them
impractical for deployment.

All of the above approaches typically operate in a central-
ized manner, in the sense that deciding the onset of attacks
and triggering countermeasures are typically performed at a
single point. Note that monitoring points may be distributed
to a certain degree.

By contrast, distributed approaches to DDoS defenses have
their components located at multiple points, which collaborate
with one another. For instance, detection may occur at the
destination-side (i.e., near victims), while the defense is exe-
cuted at the source-side (i.e., near bots). This strategy offers
the advantage of more collaborative and coordinated reactions,
potentially enhancing the effectiveness of the DDoS mitigation
mechanism. For this reason, various such approaches have
been proposed [3], [38], [4], [39]. Such methods usually rely
on packet filters and inspections, which are performed at
network points, such as routers. Thus, they often impose sig-
nificant memory/processing demands on the routers. Addition-
ally, the cooperation and communication among distributed
components increase the complexity and overhead.

One interesting approach working in a distributed manner
is a puzzle-based DDoS defense mechanism, which employs
puzzles to prevent clients from generating attack packets
continuously. Such approaches necessitate clients to solve
cryptographic puzzles, involving computationally intensive



operations, before being allowed to send a new eligible request
to a server. Essentially, this approach mandates clients to
demonstrate their eligibility by computing a solution for a
given puzzle for each connection or request.

In this approach, a benign client may experience few disrup-
tions since it is unlikely to send many requests continuously.
On the other hand, a bot, upon a command from its control
point, tries to send a large volume of requests to the target.
To make a puzzle-based DDoS defense effective, efficient and
resilient mechanisms to distribute puzzles to clients and to
adjust puzzle difficulties are needed. Yet, most of the prior
work has inadequately addressed these challenges, or they
often concentrate on partial solutions (to be discussed in
Section II-A).

In this paper, we propose a DNS-based DDoS Defense
(DDD) scheme, leveraging the Domain Name System (DNS)
to distribute puzzles to clients in a resilient manner against
attacks. Our design primarily aims at transport-level or
application-level flooding attacks, particularly those initiated
with TCP SYN packets. These attacks are categorized as ex-
haustive DDoS, as they overwhelm a target server’s resources.
In our design, a target’s monitoring server uploads a puzzle to
its authoritative name server as a new DNS record, which is
then subsequently distributed to DNS resolvers that are queried
by the clients1.

To send a request to be accepted by the target server, a client
retrieves its puzzle from its DNS resolver and presents its
solution to the target by sending a TCP SYN packet including
the solution. Moreover, we adopt a DNS-based and “out-of-
band” control approach, where a monitoring server (typically
under the control of the same administrator of the target)
continuously monitors the rate of TCP SYN packets towards
the target. Depending on the rate of attack traffic to the target,
its monitoring server adjusts the difficulty levels of puzzles.
Then the authoritative name server of the target distributes the
puzzles to clients (via local DNS resolvers).

Key contributions. Our approach makes the following
contributions to address the limitations of the prior trials to
mitigate DDoS attacks:

1. DDD relies on DNS, a critical component of the Internet
infrastructure, to distribute puzzles to clients via their DNS
resolvers. Leveraging DNS enhances the resilience to the
attack traffic. That is, the DNS authoritative server could
be available even if the resources of the target server
are depleted due to the attack traffic. To successfully
compromise our method, adversaries need to attack both
the target and its DNS server (which can be hosted in a
remote and distributed fashion) simultaneously, raising the
bar for potential attacks.

2. We offer a practical method to adjust the difficulty of
puzzles through a closed-loop control mechanism. Our
design incorporates a monitoring server, which continu-
ously measures the rate of incoming TCP SYN packets

1In this paper, clients are either benign clients or bots.

from each Autonomous System (AS). Upon detecting a
significant increase in traffic, it dynamically adjusts the
difficulty of puzzles depending on the current TCP SYN
traffic from each AS.

3. DDD is integrated into the TCP stack of the Linux kernel,
extending the Options field in the TCP header. We conduct
prototype-based experiments to showcase the efficacy of
DDD in regulating incoming traffic on a testbed.

Public release. To enable researchers to reproduce our
work and build upon it, we publicly release our code.2

II. RELATED WORK AND BACKGROUND

A. Puzzles

The concept of requiring clients to solve cryptographic
puzzles was proposed over two decades ago [13]. Since then,
many puzzle-based schemes have been studied, aiming at
mitigating DDoS attacks.

Dean et al. [9] use a dedicated message exchange for puzzle
dissemination and resolution, which increases the control traf-
fic and latency. Moreover, it cannot adjust puzzle difficulty lev-
els. Other approaches rely on third-party intermediaries [35] or
direct transmissions of a code snippet (e.g., Java Applet [37])
to clients. However, both require placing additional trust in
third-party entities. Wang et al. proposed Congestion Puzzles
(CP) [34], which distributes puzzles via ICMP and adjusts
difficulty at network routers, which increases the overhead of
routers. Noureddine et al. [21] proposed a game-theoretical
model for selecting puzzle difficulties. To send a puzzle and
its solution, they exploited TCP SYN-ACK and ACK packets,
respectively. However, the target server’s direct handling of
puzzle distribution may have an availability issue, particularly
when its resources are depleted due to attacks. Unlike these
approaches, DDD does not require trusts on third-parties or
cooperations of network routers.

Portcullis [24] exhibits similarities to our design by utilizing
DNS to distribute puzzles to clients. Portcullis however relies
on a third-party entity, the seed generator, to generate puzzle
seeds. These seeds are then disseminated to top-level domain
(TLD) name servers. Clients fetch puzzles from the TLD
servers and then send TCP packets containing the puzzle
solutions. Routers en route verify the solutions using the
puzzles retrieved from the TLD servers, ensuring the validity
of the solution within the TCP packet from a client.
DDD is different from Portcullis [24] in multiple aspects.

First, while Portcullis relies on a third party such as the seed
generator, DDD eliminates the need for a third party. Second,
DDD uses the target server’s authoritative name server for
puzzle seed distribution, which could be available even if the
target is under a heavy attack. By contrast, Portcullis, relying
on TLD servers for puzzle distribution, imposes substantial
overhead on these servers. Third, while Portcullis cannot adjust
the puzzle difficulty, DDD has a monitoring server that tracks
traffic to the target and dynamically adjusts puzzle difficulty

2https://github.com/Sagit25/DNS-based-DDoS-mitigation



to mitigate the attack traffic. DDD also supports difficulty
adjustments for each AS, enabling fine-grained control based
on real-time monitoring data. Fourth, in DDD, verification
of puzzle solutions is performed by the target. Whereas,
Portcullis requires verification to be conducted on routers,
which requires changes to routers and burdens routers sub-
stantially. Lastly, DDD is implemented within the Linux TCP
stack and tested in a lab environment, in contrast to Portcullis’
simulation-based evaluation.

B. Counting Bloom Filter (CBF)

A Counting Bloom Filter (CBF) is a probabilistic data
structure used for checking whether an element belongs to
a set. If an element is added to the set, the CBF approximates
its membership by incrementing the corresponding buckets (or
counters) by one. It decrements the corresponding buckets by
one when the element is removed. When searching for an
element, it checks if all of the corresponding buckets are non-
zero. In DDD, we employ a CBF to verify the authenticity
of tokens presented by clients, ensuring they are legitimately
issued by the monitoring server, and to provide protection
against replay attacks. That is, the target keeps a CBF for
each local DNS resolver, to be detailed later.

When employing a CBF, it is crucial to minimize the prob-
abilities of false positives and false negatives in membership
checking to reduce the risk of attacks on the validation of
puzzle solutions. With the assumption of k hash functions, m
buckets, and sufficiently large bucket sizes, when y elements
are added, the probability that a given bucket is not incre-
mented is (1 − 1

m )ky . Thus, the probability that any given
bucket has been incremented and thus has a value greater
than zero is 1 − (1 − 1

m )ky . Consequently, the false positive
probability (α) is (1−(1− 1

m )ky)k. Similarly, when x elements
are removed, the expected number of counters that decrease by
one or more is 1− (1− 1

m )kx. Thus, if w elements have been
“accepted” by false positives (and hence removed from the
set), the false negative probability (β) is (1 − (1 − 1

m )kw)k.
We provide further details on its mathematical properties in
our design in Section III-B1a.

III. DDOS TRAFFIC CONTROL BY DDD

A. Design Overview

1) Threat model: We consider transport-level and
application-level flooding attacks, particularly those initiated
with TCP SYN packets. The main objective of DDD is to
control the rate of TCP SYN packets originated from each
AS. Also, we assume that bots are globally distributed;
however, the number of bots within individual ASes may
vary significantly, depending on factors such as how their
customers access malicious servers and how their network
administrators manage their hosts.

2) Participating entities: On the target server-side, there
are two more entities: the monitoring server and the author-
itative name server. On the client-side, there is also a local
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Fig. 1. An overview of the DDD workflow is shown.
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Fig. 2. DDD can adjust the difficulty level of puzzles for each AS based on
the normal traffic from the AS.

DNS resolver. Here, we assume that each AS has a single local
DNS resolver3.

3) Operational flows: DDD’s operations are illustrated in
Figure 1. Initially, the monitoring server uploads a puzzle seed
to its authoritative name server as a DNS record; we assume
a new DNS record type (say, PUZZLE record). To establish
a connection with the server, a client queries its local DNS
resolver to retrieve the server’s puzzle (step 1⃝ in Figure 1).
The local DNS resolver, if no available puzzles, fetches the
puzzle seed data from the target’s authoritative name server
and generates tokens (i.e., puzzles), which are distributed to
its clients (steps 2⃝∼ 5⃝ in Figure 1). Note that each client will
get a distinct puzzle. The puzzle distribution process will be
detailed in Section III-B. The client then solves the received
puzzle and submits the solution in its TCP SYN packet to the
target (steps 6⃝∼ 7⃝ in Figure 1). If the solution is correct, the
target establishes a TCP session with the client; otherwise,
the TCP connection is aborted. Puzzle solving and solution
verification will be covered in Section III-C.

The monitoring server keeps track of the incoming packets
towards the target, classifying them by their source IP ad-
dresses (more precisely, their AS numbers). When flooding

3DDD can be easily extended to accommodate for an AS with multiple local
DNS resolvers.



packets are arriving, it dynamically adjusts the difficulty of the
puzzle for each AS comparing the flooding traffic and normal
traffic. For instance, under normal operations, the monitoring
server observes the number of TCP SYN packets per time unit
from each AS, which would serve as a reference for DDoS
attack detection and traffic control. If the rate of TCP SYN
packets originating from certain ASes significantly exceeds the
normal traffic rates (e.g., ASes 2 and 3 in Figure 2), the puzzle
difficulty levels for those ASes are increased. This means that
clients in an AS with few bots need to solve easy puzzles,
resulting in minimal disruption. How to adjust puzzle difficulty
for each AS is detailed in Section III-D.

The following sections will elaborate on the three main
mechanisms of DDD: (1) puzzle generation by the moni-
toring server and distribution from the authoritative name
server to clients via local DNS resolvers (Section III-B);
(2) solving puzzles by clients and verifying solutions by the
target (Section III-C); and (3) adjusting the puzzle difficulty
based on current network traffic by the monitoring server
(Section III-D).

B. Generating and Distributing Puzzles

A DNS resolver retrieves puzzle seed data from the author-
itative name server of a target, and generates puzzles from
the seed, which are then distributed to its clients as a DNS
record (e.g., PUZZLE record). In DDD, an authoritative name
server of the target has puzzle seed data for each AS (see
Section III-B1). The seed data is then disseminated to the local
DNS resolvers of the ASes. Upon receiving puzzle seed data,
the DNS resolver generates a sequence of puzzles (e.g., using
a hash chain). These puzzles are to be fetched by its clients
(see Section III-B2).

1) Puzzle seed distribution to local resolvers:
a) Generating puzzle seed: A puzzle seed data for an

AS consists of the puzzle seed, the number of puzzles, and the
puzzle threshold (i.e., difficulty). Here, the number of puzzles
is the length of the hash chain (to be generated from the seed).
For each AS, a monitoring server tracks the incoming rate of
TCP SYN packets.4 Using this information, it generates a seed
randomly and calculates the length of a hash chain for each
AS. The length is the product of the “normal” TCP incoming
rate and the seed update interval (say 5 minutes). The puzzle
seed, the length of its hash chain, and the puzzle threshold (see
III-D) for each AS are sent to the authoritative name server,
which are to be disseminated to the local resolver of the AS.

A bot could potentially execute the following attacks: (i)
reusing already solved puzzle tokens (i.e., replay attacks),
(ii) fabricating spoofed puzzles, or (iii) selecting a nonce
randomly without solving puzzles. To prevent the first two
attacks, the target leverages a CBF (for each AS) generated
by the monitoring server, to be discussed later.

Note that when all hash tokens are exhausted, they are to be
replenished, and the CBF is also updated. All the analyses are

4We assume the source address spoofing is mitigated by ingress and egress
filtering.

conducted under steady-state conditions. The difficulty adjust-
ment policy aims to sustain the rate of (previously measured)
normal traffic from an AS by setting the difficulty level such
that the current inter-arrival time between two successive TCP
SYN packets from the AS equals the reciprocal of the rate.

Suppose the monitoring server monitors the TCP traffic
from AS i. Let us denote the traffic by normal users in AS i
as ni and traffic from attacking users as ai

5. Then total traffic
is ni + ai, and the puzzle difficulty for AS i is calculated so
as to make the total incoming traffic reduced by ni

ni+ai
. By

adjusting the difficulty level so as to reduce the total traffic by
this ratio, DDD can achieve the traffic control in such a way
that an AS with more bots (or more attack traffic) will get
more penalties.

Configuring a CBF. Considering the probabilistic nature
of a CBF, it must be designed to meet the upper bounds on
false positive and false negative ratios, in accordance with the
server’s operational requirements. Suppose a CBF uses k hash
functions and m buckets. Assuming the bucket is sufficiently
large (i.e., no overflow) and y elements are added to the CBF,
the false positive probability6 (α) is given by (1−(1− 1

m )ky)k,
as detailed in Section II-B. Similarly, if x elements have
been accepted by false positives (and hence removed from
the set), the false negative probability7 (β) is calculated as
(1− (1− 1

m )kx)k. In such cases, the client will re-try the TCP
connection after solving a new puzzle.

In a DDoS attack with an incoming ni normal TCP SYN
packets and ai

8 attack TCP SYN packets from AS i per
unit time, the value ai · α indicates the additional attack load
imposed on the server, and ai·β indicates the number of tokens
(or puzzles) that become wasted.

For sufficiently large m, we can approximate β as:

β ≈

(
1−

(
1− 1

m

)kaiα
)k

≈
(
1− e−

kaiα

m

)k
Although it is almost infeasible to eliminate both false

positives and false negatives, by carefully adjusting m, y, and
k, we can ensure that α and β remain within acceptable bounds
(say 1%).

b) Disseminating puzzle seed: There are two cases in
which the dissemination of puzzle data (from the authoritative
name server) to the ASes (of the clients) becomes necessary.

Initial seed distribution. When a DNS resolver lacks
puzzle data but receives a DNS query from a client requesting
this data, it must then request the puzzle data from the
authoritative name server. When the resolver receives the
puzzle data, it will generate the hash chain, and construct the
DNS records (e.g., PUZZLE records), each of which contains

5By keeping track of normal traffic, the monitoring server already predicts
ni for each time period (say 10 minutes).

6The probability that a spoofed or reused puzzle presented in a TCP-SYN
packet is accepted by the server.

7The probability that a valid solution of the puzzle is not accepted by the
server.

8The attack traffic will be TCP SYN packets (from the bots) with the valid
or invalid solutions of valid or invalid (i.e., reused or spoofed) puzzles.



the puzzle token and puzzle difficulty threshold (for each
potential client). Once a DDoS attack takes place, the target
asks a client to request a puzzle from a resolver (to be detailed
later). Then the client retrieves the puzzle from the resolver.
Therefore, when the resolver exhausts all the hash values (or
puzzles) in the hash chain, it must request a new seed and a
new difficulty threshold to the authoritative name server.

Updating seeds. An authoritative name server may need
to update the difficulty of solving puzzles. In such a scenario,
TCP connection requests (with a solution of the previous
puzzle difficulty) from clients would be rejected by a target,
prompting clients to request a new puzzle with an up-to-date
difficulty level from their DNS resolvers; we propose to use
one of the reserved bits for future use in the DNS header
to request the resolver to retrieve a new PUZZLE record for
puzzle data (from the authoritative name server of the target).
Then, even if a resolver has not used up all the generated hash
values, it requests new puzzle data from the authoritative name
server.

2) Puzzle distribution from resolvers to clients: After
receiving puzzle seed data from the authoritative name server,
a DNS resolver generates a hash chain of tokens (or puzzles).
This is achieved by applying a hash function to the seed for
a specified number of times, which is the chain length in the
puzzle data. When a client requests a puzzle (e.g., PUZZLE
record) from its resolver, the resolver provides a token from
this chain, distributing it in reverse order - starting with the
most recently generated one. This reverse order distribution
prevents clients from predicting subsequent puzzles in the
chain.

C. Solving Puzzles and Verifying Solutions

1) Puzzle Solution and Submission: Solving a puzzle
involves finding a nonce value that satisfies the following
condition. From an authoritative name server, a local DNS
resolver of ASi obtains its seed Si, chain length Li, and
difficulty threshold Ti. For a given ASi, it has a local DNS
resolver whose address is Ri. A client j (in ASi) who received
a token hj (from the local resolver) has an IP address Ai,j and
it should find a nonce that satisfies the following equation.

H (Ai,j , Ri, hj , nonce) ≤ Ti

Here, the token hj is an element of a hash chain. Including
the source IP (Ai,j) and the local DNS resolver’s IP (Ri) helps
prevent sharing nonces among bots. Replay attacks, in which
attackers try to reuse the solution of the same puzzle, can be
mitigated using a CBF, as detailed in Section III-B1.

The equation below is the probability of successfully solv-
ing a puzzle, where l denotes the bit length of the hash
output, and 2l represents the total number of possible outcomes
generated by the hash function.

Pr(H (Ai,j , Ri, hj , nonce) ≤ Ti) =
Ti

2l

For instance, SHA-256 can be used as the hash function, and
only the least significant 32 bits of the result are extracted
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Fig. 3. The operations of the monitoring server are illustrated. The monitoring
server watches the incoming traffic from each AS to the target and dynamically
adjusts the puzzle difficulty for each AS based on their traffic (e.g., the normal
traffic and the attack traffic).

when l = 32. Here, the difficulty level is set to be an
unsigned 32-bit integer. Also, the difficulty level is determined
by adjusting the threshold, which is reduced as the difficulty
level increases. For instance, when the threshold is 232 − 1,
there is no need to solve the puzzle. When the threshold is Ti,
an expected average number of hash operations is given by:

2l

Ti

After finding a solution (i.e., a nonce value), a client j
(in ASi) sends the found nonce, token (hj), and local DNS
resolver’s IP address (Ri) to the target by including them in
its TCP SYN packet. How to include these data in the TCP
header extension will be explained in Section IV-A.

2) Puzzle Solution Verification: After receiving a solution
from the client, the target server verifies it as follows. First,
the target verifies whether the received token was legitimately
issued by checking the token against the CBF from the
monitoring server. If valid, it then checks whether the solution
satisfies the specified condition (say, less than or equal to the
threshold).

If the solution and the puzzle are valid, the target will
reply with a TCP SYN-ACK packet to complete the TCP
handshake. If the puzzle or solution is invalid, the connection
request is rejected; for instance, a TCP RST packet may be
sent to the client. This may also happen if a TCP SYN packet
contains a solution for a puzzle of old difficulty level, which
typically occurs under a DDoS attack when the target server
increases the puzzle difficulty. In this case, the target aborts
the connection by sending a TCP RST packet (with a reserved
bit set), which forces clients to retrieve new puzzles through
their DNS resolvers.



D. Adjusting Puzzle Difficulty

The monitoring server, which adjusts the puzzle difficulty,
monitors incoming traffic from each AS to the target server.
It monitors the rate of TCP SYN packets from each AS.9

Note that the monitoring server analyzes the Internet routing
registry (IRR), resource public key infrastructure (RPKI), and
BGP dataset so as to be able to map the source IP addresses
to their AS numbers. Figure 3 illustrates how the monitoring
server operates.

The monitoring server detects the onset of a DDoS attack if
there is an abnormal increase of total number of incoming TCP
SYN packets across the ASes. Here, ci and ni are the amounts
of current traffic and normal traffic from AS i, respectively.
The latter (ni) is the average of the previously measured traffic
for the given time interval (say, from noon to 10 minutes after
noon). DDD is triggered when T c ≥ γ · Tn, where Tn =∑

i ni, T c =
∑

i ci, and γ is a threshold for detecting DDoS
attacks. Upon detecting a DDoS attack, the monitoring server
determines the puzzle data for each AS considering the current
traffic and the normal traffic measured previously.

Puzzle difficulty adjustment policy. The first princi-
ple governing puzzle difficulty adjustment is that the target
server’s resources are provisioned for regular traffic. The
second principle is that an AS with a higher ratio of attack
traffic to normal traffic will incur more penalties, requiring
clients within the AS to solve more difficult puzzles.

Let us denote the current traffic rate from AS i as ci. By
setting the difficulty threshold of AS i, Ti, as follows, we can
adjust the traffic rate to the desired10 normal rate, ni. Here, l
denotes the length of the truncated bits from the hash output,
and 2l represents the total number of potential values for these
truncated bits.

Ti

2l
=

ni

ci

The time required to solve the puzzle is a critical factor
impacting service availability. If we denote the hash rate of
a given computer as rh, its expected value of puzzle-solving
time S can be expressed:

S =
2l

rhTi

As the monitoring server monitors incoming traffic from
individual ASes, it periodically calculates the average amount
of traffic coming from each AS (denoted by ni from AS i,
measured over, for instance, every 10 minutes). Considering
that DDoS attacks frequently originate from a fluctuating
number of bots spread unevenly across numerous ASes, it is
crucial to adjust puzzle difficulty levels in a traffic volume-
adaptive and AS-specific manner. Each AS will be penalized
based on its rate of traffic increases. This strategy operates
on the principle of selectively imposing higher difficulty on

9For instance, it can rely on the port mirroring function on the Ethernet
switch connected to the target server to receive mirrored TCP SYN packets.

10We assume that the target server farm is provisioned for normal traffic.

ASes that exhibit a significant influx of attack traffic. The aim
is to mitigate the risk of reduced overall network availability
caused by concentrated attacks from specific ASes.

IV. EVALUATION

A. Implementation

We have integrated the puzzle mechanism into the TCP
stack of the Linux kernel. Also, we develop a monitoring
server, an authoritative name server, and a target server ap-
plication to demonstrate the effectiveness of our design.

1) Puzzle mechanism (in the Linux kernel): As mentioned
earlier, a client includes the solution of the target’s puzzle
within its TCP SYN packet. For this, we slightly modified
the TCP handshake mechanism in Linux kernel version 6.1
(of Raspberry Pi OS); we assume that both clients (including
bots) and the target operate on Linux OS. Specifically, we
exploit the Data Offset and Options fields in the TCP header
as follows. We use the Options field to include the DNS
resolver’s IP, nonce, puzzle token, and puzzle threshold. In
addition, we implement functions that extract and validate the
puzzle solution from the TCP header in the kernel. The hash
function is the SHA-256 function from the OpenSSL library.

2) DNS and Target servers: We develop a C program that
serves as a simple DNS resolver, which handles queries for
DNS A and PUZZLE records11, fetches them from the au-
thoritative name server, and forwards the responses to clients.
Additionally, it generates a chain of tokens (i.e., puzzles) from
the seed in the PUZZLE record. Note that the authoritative
name server, also implemented as a C program, distributes
DNS A and PUZZLE records (of individual ASes), the latter
of which is generated by the monitoring server. Note that all
DNS communications use UDP. Moreover, we implement a
C application (for a target server) to handle TCP connection
setups, akin to an echo server, to evaluate our design’s efficacy
against DDoS attacks, especially TCP SYN flooding.

3) Monitoring server: Using the libpcap library, the
monitoring server captures all incoming packets toward the
target and counts TCP SYN packets. Upon receiving packets,
the monitoring server categorizes their originating ASes by
analyzing the source addresses of the packets. We also employ
a circular buffer to establish a sliding window of one second,
storing packet data received within the most recent second.

The monitoring server keeps track of TCP SYN packet
counters for each AS, recording the number of packets from
each AS in each time period (say 10 min). When a DDoS
attack is detected (e.g., when the total size of the circular buffer
reaches the threshold), the monitoring server calculates an AS-
specific puzzle difficulty level based on the current counter for
each AS and the previously measured normal traffic.

4) Reference scheme: Finally, to set a baseline, we imple-
ment a reference scheme where the target distributes puzzles
directly to clients. Unlike DDD, in this scheme, the target
distributes puzzles to clients directly after a TCP request reset
message as follows. The target provides a puzzle via a separate

11We assume a new PUZZLE record is introduced in DNS.



Ethernet 
Switch

(1Gbps)

Target Server

Authoritative 
Name Server Monitoring

Server

RPi 4

Local 
Resolver

Local 
Resolver

Local 
Resolver

Benign
client

Bot

AS AS

AS

Fig. 4. Our testbed configuration is illustrated.

UDP message (for ease of implementation). The client then
solves it and submits the solution in a TCP SYN packet to the
target. Such a direct distribution of puzzles has a drawback:
if the target becomes unavailable, its ability to control traffic
through puzzles becomes ineffective (which will be shown in
Section IV-C2).

B. Experimental Configuration

Testbed setup. Our testbed comprises four Raspberry Pi
(RPi) version 4 devices connected through a 1 Gbps Ethernet
switch (in Figure 4). One RPi is assigned to host the following
servers (i.e., co-location): a target server, its authoritative
name server, and its monitoring server. The monitoring server
captures all the traffic going to the target server.

The other three RPis are configured to represent three dif-
ferent ASes, respectively. Each RPi runs a local DNS resolver
and three clients (including both benign and bot clients). Note
that, given the RPi 4’s four-core architecture, we can run up
to four entities (e.g., one local resolver and three clients). To
ensure our testing does not interfere with external networks, all
experiments are conducted in a controlled, closed environment
(e.g., the testbed is detached from the Internet).

Evaluation criteria. To assess the effectiveness of DDD, we
conduct a series of experiments: Initially, (1) we investigate
the rate-limiting capacity of puzzles by adjusting the puzzle
difficulty (i.e., the puzzle threshold). This involves measuring
the average time required for a client to find a solution (and
send an eligible packet) as we vary the puzzle threshold.
This measurement data is utilized to adjust puzzle difficulties
in response to fluctuations in incoming traffic levels. As a
comparison, (2) we explore the rate control capability of a
reference scheme in which the target directly disseminates
puzzles to clients. Lastly, (3) we examine whether DDD can
effectively control incoming traffic rates and compare its result
with that of the reference scheme.

C. Experiment Results

1) Rate limiting capability of puzzles: First, we evaluate
the rate-limiting capability of puzzles by varying the puzzle
difficulty. In the absence of the puzzle mechanism, a single
client (e.g., a client application in an RPi) can transmit
approximately 4,000 packets per second in our testing setup.
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Fig. 5. The average time taken by a client to find a solution (and send a
packet) to the target server, depending on the puzzle threshold, is plotted.
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Fig. 6. This demonstrates the reference scheme’s traffic control capability,
by showing the counts of incoming TCP SYN packets before and during a
DDoS attack.

Figure 5 shows the average time required for a single client to
find a solution and send a packet with our puzzle mechanism,
which is integrated within the kernel. Note that this experiment
focuses on the client’s process of acquiring puzzle data from
a local DNS and solving the puzzle. As the puzzle threshold
decreases (or the difficulty increases), the time required to
solve a puzzle increases accordingly. This implies that the
rate at which puzzles are solved (and consequently TCP SYN
packets arrive at the target) is inversely proportional to the
threshold value shown in Figure 5.

The monitoring server endeavors to maintain the flow of
normal traffic from each AS by adjusting the puzzle difficulty
level of each AS as incoming traffic surpasses the predefined
DDoS threshold. This adjustment process continues until the
volume of current traffic returns to normal levels.

2) DDoS traffic control by the reference scheme: Next,
we conduct an experiment employing a reference scheme that
distributes puzzles directly from the target, in contrast to DDD.
In this attack scenario, all three ASes launch a SYN flooding
attack against the target, with each AS contributing varying
levels of traffic. The reference scheme identifies the attack
when the total TCP SYN packet count per second exceeds
300. Figure 6 demonstrates the limitation of the reference
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Fig. 7. This demonstrates DDD’s traffic control capability, by showing the
counts of incoming TCP SYN packets before and during a DDoS attack.

scheme in controlling the volume of incoming traffic under a
DDoS attack scenario. The SYN flooding attack starts around
27 seconds, whereas the target, operating under the reference
scheme, detects the attack near 31 seconds, as total TCP
SYN packet counts surpass the threshold. Subsequently, the
target attempts to regulate traffic by directly disseminating
puzzles to clients. However, after 33 seconds, the target’s
TCP SYN count drops to zero for AS 0 and AS 2, which
indicates the target’s resources are depleted and hence it cannot
reply with puzzles. As anticipated, should the target itself
directly distribute puzzles, its ability to control traffic can be
diminished when overwhelmed by DDoS traffic.

3) DDoS traffic control by DDD: Finally, we assess the
efficacy of DDD in controlling the DDoS traffic, using the same
setup as in the above experiment; all three ASes flood SYN
packets, and the DDoS detection threshold is set at 300 TCP
SYN packets per second. Figure 7 illustrates the capability of
DDD to contain the DDoS traffic. At approximately 14 seconds,
bots across ASes initiate SYN flooding, leading to an increase
in TCP SYN packet counts per second. Specifically, these
counts exceed 70 for AS 0, 130 for AS 1, and 80 for AS
2, with some fluctuations. When the total traffic from these
ASes exceeds the DDoS detection threshold, DDD increases
the puzzle difficulty to reduce the influx of TCP SYN packets
to the target. Consequently, the incoming traffic begins to
diminish and eventually stabilizes by around 22 seconds. In
contrast to the results of the reference scheme (in Figure 6),
DDD successfully adjusts the incoming traffic without any
availability issues.

V. DISCUSSION

1) Security of DNS: DDD does not require DNS security
mechanisms (such as DNSSEC [26], [28], [27], DoT [11], and
DoH [10]) for PUZZLE records. Deploying such mechanisms
will enhance the trustworthiness of the puzzle data.

The DNS infrastructure itself is susceptible to DDoS attacks.
Nonetheless, due to its critical role, defensive measures such
as rate limiting, access control, anti-spoofing, and filtering

have been developed. Legitimate queries to authoritative name
servers typically originate from (local and public) DNS re-
solvers. Implementing these measures in such networking
environments can be done seamlessly.

2) Puzzle solving overhead in non-attack situations: In
DDD, clients solve puzzles to establish connections with a
target server, regardless of whether flooding attacks are occur-
ring. Under normal circumstances, the puzzle’s difficulty level
is effectively zero, as the threshold is set to the maximum value
(e.g., 232−1 for a 32-bit unsigned integer), enabling clients to
find a nonce with a single hashing operation. In response to a
sudden influx of traffic, the threshold will dynamically adapt,
managing incoming traffic via puzzle-solving.
DDD can also be configured to enforce puzzle-solving only

during DDoS attacks. During normal traffic, the target will not
verify puzzle solutions, and the clients will not be required to
solve puzzles. However, upon detecting excessive traffic, the
target would counter incoming TCP SYN packets with TCP
RST packets, prompting clients to engage in puzzle-solving.

3) Other types of DDoS attacks: DDD primarily aims at
detecting and mitigating TCP SYN-based flooding attacks.
However, it can be adapted to counter other TCP-based flood-
ing attacks, such as TCP FIN flooding. Also, while UDP-based
DDoS attacks are not the focus of DDD, it can be extended to
address these threats. By monitoring UDP packets based on
their port numbers (e.g., DNS, NTP, SSDP), we can implement
port-level control for UDP flooding packets originating from
each AS. Alternatively, we can regulate the overall rate of UDP
traffic from each AS. Integrating a rate-limiting mechanism
such as [25] into DDD can be easily implemented.

4) IP spoofing mitigation: In DDoS attacks, bots spoof-
ing their source IP addresses challenge defense systems,
including DDD, which depend on rate control tied to origin
ASes identified through source IP addresses. Consequently, a
key strategy against such attacks is identifying and blocking
spoofed IP packets. Ingress filtering [31], employed on routers
or firewalls, blocks suspicious incoming packets based on their
IP addresses. Although the specific deployment of ingress
filtering may vary to some extent, approximately 30% of ASes
had implemented ingress filtering as of 2021 [8].

Relying on third-party IP blacklists [1], [32] can improve the
effectiveness in filtering out malicious IP addresses. Addition-
ally, for each target server, maintaining the whitelist of ASes
where the majority of potential (benign) clients are located is
straightforward. In cases of severe flooding attacks, it may be
necessary to discard all incoming packets from the ASes other
than the whitelist.

VI. CONCLUSION

In this paper, we propose a novel DNS-based DDoS defense
mechanism, DDD, which tackles the challenges of puzzle dis-
tribution by leveraging DNS. Employing DNS for puzzle dis-
tribution as an ‘out-of-band’ loop for traffic control enhances
the resilience and scalability of DDD against DDoS attacks. We
also propose implementing AS-specific rate control to incen-
tivize ASes to upkeep their networks with fewer bots. To do so,



DDD has a mechanism for adjusting puzzle difficulty through
the monitoring server, enabling AS-level traffic monitoring and
control. Through prototype-based experiments, we evaluate
DDD to demonstrate its performance in controlled network
environments. Our findings underscore the effectiveness and
robustness of DDD in mitigating DDoS traffic.
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