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ABSTRACT 
Establishing secure connections fast to end-users is crucial to online 
services. However, when a client sets up a TLS session with a server, 
the TLS handshake needs one round trip time (RTT) to negotiate a 
session key. Additionally, establishing a TLS session also requires 
a DNS lookup (e.g., the A record lookup to fetch the IP address 
of the server) and a TCP handshake. In this paper, we propose 
ZTLS to eliminate the 1-RTT latency for the TLS handshake by 
leveraging the DNS. In ZTLS, a server distributes TLS handshake-
related data (i.e., Dife-Hellman elements), dubbed Z-data, as DNS 
records. A ZTLS client can fetch Z-data by DNS lookups and derive 
a session key. With the session key, the client can send encrypted 
data along with its ClientHello, achieving 0-RTT. ZTLS supports 
incremental deployability on the current TLS-based infrastructure. 
Our prototype-based experiments show that ZTLS is 1-RTT faster 
than TLS in terms of the frst response time. 
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1 INTRODUCTION 
As online service users are sensitive to latency in responses from 
servers [17, 59], it is crucial for content providers to provide low-
latency services. According to [50], Amazon fnds that every 100ms 
of latency costs them a 1% drop in sales, and Google fnds that an 
extra 0.5 seconds for generating search page drops trafc by 20%. 
Also, it is reported that users tend to visit a website less often if it is 
slower than a close competitor by more than 250 milliseconds [42]. 

With the growing concerns about security and privacy in online 
communications, Transport Layer Security (TLS) [45] has become 
the de facto standard to protect user privacy and prevent tamper-
ing [2]. However, TLS requires one round-trip to establish a secure 
session between a client and a server, in addition to a DNS [8] 
lookup and a TCP handshake [26]. Thus, it is challenging to reduce 
the delay in setting up a TLS session for user satisfaction [18]. 

To address such a challenge, many approaches have been pro-
posed to reduce the latency of the TLS handshake. After a com-
prehensive analysis, we fnd that the approaches in the literature 
are classifed into three categories. First, some approaches [27, 45] 
reduce the number of round-trips of the TLS handshake. The ap-
proaches [38, 39] in the second category attempt to send the appli-
cation data with the handshake messages simultaneously. Third, 
Bohannon [15] seeks to reduce the length of a round-trip time (RTT) 
by placing a proxy near a client. 

In this paper, we propose a novel approach, ZTLS, that leverages 
the DNS to reduce 1-RTT in the TLS handshake. As a DNS lookup 
by a client is required before the TLS handshake, our main idea is 
that if a server delivers its cryptographic information (e.g., Dife-
Hellman elements for a key negotiation) simultaneously with its 
IP address through DNS records, 1-RTT can be reduced in the TLS 
handshake. 

To this end, we design Z-data that contains a server’s crypto-
graphic information, which can be published in advance to the 
server’s authoritative DNS server. Z-data also includes informa-
tion such as a signature and a certifcate, to provide authentication 
for its issuer (i.e., domain) and integrity of itself without addi-
tional mechanisms such as DNSSEC [48]1. Before initiating the TLS 
handshake, a client fetches a server’s IP address as well as Z-data 

1As of December 2016, less than 1% of .com, .org, and .net sites have deployed DNSSEC, 
among which about one-third are not working properly [28]. 
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simultaneously2. With Z-data, a client can generate a session key 
to encrypt its data and send “encrypted” application data to the 
server with a 0-RTT delay. In this way, ZTLS efectively reduces 
the latency to establish a secure channel compared to TLS, which 
provides users with a faster response. 

Furthermore, we design ZTLS to be backward compatible. A ZTLS 
client determines whether a connecting server supports ZTLS by 
whether the Z-data of the server exists in the DNS, and a ZTLS 
server decides whether it conducts ZTLS or not, based on the pres-
ence of an extension for ZTLS in the received ClientHello. 

We summarize the contributions of this paper as follows. 
• We design a novel technique to enable clients can send en-
crypted data with a 0-RTT delay. ZTLS is the frst approach 
that leverages the DNS to reduce network latency in the TLS 
handshake while supporting backward compatibility with the 
standard TLS protocol. 

• We implement a prototype of ZTLS and publicly release the 
source codes3. 

• To show the feasibility of ZTLS, we conduct a comprehensive 
evaluation and show that ZTLS reduces 1-RTT4 of the latency 
required for a client to get the frst application data from a 
server. 

2 BACKGROUND 
When a TLS client (e.g., a browser) intends to send encrypted ap-
plication data to a TLS server, the client should take several steps 
before sending the data (see Figure 1). First, the client sends a DNS 
query to a DNS resolver to obtain the IP address of a server of 
interest. Next, the client and the server make a TCP connection 
by performing the three-way TCP handshake. Finally, on top of 
the TCP connection, a TLS session is established through the TLS 
handshake. 

Domain Name System (DNS). The DNS is a globally distributed 
database that maps domains to their associated information (using 
DNS records [8]), and the information (i.e., DNS records) is provided 
through its authoritative name server. Usually, the authoritative 
name server of a domain is close to the domain’s other servers 
like web and mail servers; however, the name server may not be 
close to its potential clients. On the client side, DNS resolvers send 
DNS queries recursively from the root name server down to the 
authoritative name server on behalf of client applications. They 
also cache the results of the DNS queries for a certain period. 

One of the most important DNS records is an A record that 
contains the IPv4 address of a domain (i.e., its server). As shown 
in Figure 1, a TLS client frst fetches the server’s A record to obtain 
its IP address. In addition to A, there are many other DNS records 
with their own purposes. For instance, a TLSA record [31] contains a 
server’s certifcate or public key, and a TXT record [8] was originally 
intended for human-readable notes; however, it is also used to store 
machine-readable data such as security information [33, 36, 37, 43]. 
2DNS lookups can be conducted in parallel. 
3ZTLS library — https://doi.org/10.5281/zenodo.7597964. ZTLS client and server — 
https://doi.org/10.5281/zenodo.7597982.
4Averaged round trip times toward Alexa top 1M sites over wired networks are Eastern 
N. America: 51.7ms, Western N. America 61.2ms, South America: 102.9ms, Western 
Europe: 40.5ms, South Africa 138.1ms, East Asia: 120.9ms, South East Asia: 136.2, and 
Oceania: 126.6 [40]. In wireless environments such as 3G, RTTs are usually longer [44]. 
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Figure 1: A client frst gets a server’s IP address from DNS. 
Next, the client and the server establish a TCP connection. 
Finally, they establish a TLS session over the TCP connection. 

When sending a query/response for a DNS record, the ‘DNS-over-
UDP/53’ protocol [8] is used by default. The maximum message 
size of this protocol was 512 bytes at the time of its design but 
became 4,096 bytes after EDNS [23] appeared in 1999. However, the 
maximum transmission unit (MTU) (The default is 1,500 bytes5) [7] 
is the practical limit. This is because if a DNS response size exceeds 
this limit, IP fragmentation [6] occurs and the response is retrans-
mitted with the ‘DNS-over-TCP/53’ protocol [8], which results in a 
signifcant delay. 

Transport Layer Security (TLS). TLS provides a secure channel 
between two communicating endpoints: a TLS client and a TLS 
server. Security properties of TLS include server authentication6, 
confdentiality, and integrity. First, server authentication means 
that a client should be able to authenticate a server during a TLS 
handshake. A TLS server sends its Certificate and its signature 
(CertificateVerify) over the TLS handshake. By verifying the 
signature, the client authenticates the server. Second, confdentiality 
and integrity mean that no one other than the two endpoints can 
read/modify/write data exchanged between them. To this end, both 
TLS endpoints negotiate the encryption method (e.g., AES-256) and 
hash method (e.g., SHA-256) through the TLS handshake. They also 
establish a session key employing an HMAC-based Extract-and-
Expand Key Derivation Function (HKDF) [34] during the handshake. 
From TLS 1.3 [45], it is mandatory for TLS endpoints to use the 
Ephemeral Dife-Hellman Key Exchange method [30] to provide 
forward secrecy7 [19]. Overall, a TLS handshake entails 1-RTT 
overhead in TLS 1.3 (see Figure 1). 
5In practice, the recommended maximum payload size value is 1,280-1,410 bytes [23].
6Client authentication is optional. 
7It guarantees the session key is not compromised even if the related long-term key is 
compromised. 
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3 RELATED WORK 

TLS handshake latency reduction. The TLS 1.3 handshake [45] 
reduces the number of RTTs to one in contrast to two RTTs in the 
TLS 1.2 handshake [24]. There is also a simplifed TLS handshake to 
establish a subsequent session in a shorter time compared to a full 
handshake. There are a couple of simplifcation mechanisms. First, 
in Session ID Resumption [24], a client uses the session ID, provided 
by a server in the frst session, to resume the session. The server 
should keep the state mapped to the session ID. Second, in Session 
Ticket Resumption [27, 49], a client employs the session ticket 
encrypted by a key known only to a server. This ticket contains 
the session key and other information necessary to resume the 
session. Thus, the server does not need to maintain session states 
in its storage. TLS endpoints can arrange a Pre-Shared Key (PSK), 
which includes a database lookup key like Session ID Resumption 
or a self-encrypted and self-authenticated value like Session Ticket 
Resumption [45]. The PSK mode supports 0-RTT Data, which means 
a client can transmit encrypted application data (so-called "early 
data") along with a PSK on the frst fight [45]. 

In TLS Snap Start [38], a client sends encrypted application 
data without a PSK on the frst fight. For subsequent TLS con-
nections, a client generates a ServerHello value based on the 
previous ServerHello and a specifc rule, derives a session key 
using a ClientHello and the ServerHello, encrypts the applica-
tion data based on the key, and transmits the data along with the 
ClientHello and the ServerHello on the frst fight. 

In TLS False Start [39], a client transmits encrypted application 
data 1-RTT faster than the standard TLS 1.2 handshake. In TLS 1.2, a 
client sends application data after the TLS handshake is completed, 
while in TLS False Start, a client sends the data after receiving 
ServerHelloDone before Server’s Finished arrives. 

In addition, there is a study that utilizes a proxy for TLS hand-
shakes. A patent from Facebook [15] proposes a mechanism that 
a proxy device located near a user negotiates cipher suites on be-
half of its principal server. In this way, the delay of the TLS 1.2 
handshake can be reduced. 

TCP handshake latency reduction. TCP Fast Open (TFO) [21] 
removes the 1-RTT required for the TCP handshake; thus, it can 
be used to accelerate TLS session establishment [10, 20, 47]. In 
TFO, a server shares a TFO cookie in the initial TCP connection 
with a client, and the client utilizes the cookie in the subsequent 
connections. 

QUIC [32] runs the TLS handshake over UDP [55]; that is, it 
initiates the cryptographic negotiation without the TCP handshake. 
Thus, it can also accelerate the completion of the TLS handshake. 

Takeaway. We get the following lessons from the literature: 

• Several approaches such as 0-RTT Data and TLS Snap Start 
send encrypted application data with information indicating a 
pre-shared key or some information from which a key can be 
derived. 

• It would be desirable if we can accelerate setting up the frst 
TLS session (not to mention subsequent sessions). Most of the 
approaches [24, 27, 38, 45, 49] cannot be applied for establish-
ing the frst TLS session. Thus, their usage can be limited as 

the majority of HTTPS connections are reported to be the frst 
sessions, not session resumptions [53]. 

• A proxy near clients can be used to reduce the setup la-
tency [15]. This approach achieves its goal by reducing the 
physical distance for communications; however, it requires 
extra entities, which is costly and difcult to deploy and main-
tain. 

Based on the above lessons, we decide to fnd a way to pass 
information to a client so that the client can derive a session key 
even before contacting the server. To this end, we turn our attention 
to the DNS as (1) the DNS lookup is usually performed before the 
TLS protocol, (2) there are many DNS record types, some of which 
can be fexibly used, and (3) the DNS infrastructure can disseminate 
server-related data at some points close to clients. 

TLS enhancement leveraging the DNS. Several techniques [31, 
46] have been proposed employing the DNS to make TLS more 
privacy-preserving and security-hardening. TLS Encrypted Client 
Hello (ECH) [46] is devised to protect the privacy of sensitive in-
formation (i.e., domain name) in the ClientHello. DANE [31] is 
introduced to mitigate the issue of fraudulent certifcates. However, 
no approaches are presented to enhance the performance of the 
TLS handshake. 

4 ZTLS HANDSHAKE DESIGN 
This section describes ZTLS. We frst present goals and a threat 
model that we consider in designing ZTLS. Then, we provide an 
overview of ZTLS, followed by its details. 

4.1 Design considerations 

Design goals. In designing ZTLS, we take into account the follow-
ing goals: 

• Reduced frst response latency: A ZTLS client receives the 
frst response faster than TLS 1.3 with a ZTLS server, and it 
has the same delay as TLS 1.3 with a TLS 1.3 server. 

• Backward compatibility: Both a ZTLS client and a ZTLS 
server should be able to fall back to the TLS protocol if their 
counterpart does not support ZTLS. 

Threat model. We assume a Dolev-Yao attacker [25] that fully con-
trols the network. That is, the attacker can receive all the messages 
from the participating parties, and can modify, drop, reorder, or 
inject messages. However, the attacker is computationally bounded. 
For instance, the attacker can decrypt encrypted messages only 
if it has the corresponding encryption key. The attacker can also 
launch DNS-related attacks such as DNS poisoning [57]. We as-
sume all the related parties are available; that is, we do not consider 
resource-exhaustion attacks [41]. 

4.2 Overview 
We design ZTLS based on the TLS 1.3 handshake. ZTLS leverages the 
DNS system to remove the 1-RTT of TLS handshake (see Figure 2). 

○1 A ZTLS server uploads information dubbed Z-data to its 
authoritative name server 8. 

8Another server with one of the domain’s certifcates and its private key can also make 
and upload Z-data to the authoritative name server. 
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Figure 2: An overview of ZTLS operations is shown. A 
ZTLS client sends the frst encrypted data along with its 
ClientHello with 0-RTT. 

○2 DNS resolvers fetch and cache Z-data. 
○3 A ZTLS client obtains Z-data from a DNS resolver. 
○4 The client generates a session key from the Z-data and 

the information in its ClientHello, and hence sends its en-
crypted application data along with the ClientHello. In the 
ClientHello, there is an extension: {extension_type=ztls; 
extension_data=Zdata_id }. In this way, the ZTLS client sends 
its encrypted application data to the ZTLS server with 0-RTT 
delay. 

○5 The server responds to the ClientHello with a 
ServerHello and transmits its encrypted application 
data along with the other messages. The ServerHello 
includes a "ztls" extension to confrm the selected Zdata_id 
or to handle exceptions (e.g., Zdata_id in the ClientHello 
is expired). If the server uses the same certifcate as the 
Z-data, it may omit the certifcate transmission. 

○6 If a Z-data-related exception occurs, the ZTLS client falls 
back to the standard TLS handshake. Otherwise, the ZTLS 
handshake is fnalized with exchanging Finished messages. 

The overall interactions among ZTLS-related entities are shown 
in Figure 3. First, a ZTLS client queries a DNS resolver to obtain the 
IP address and Z-data of a server of interest simultaneously using 
multi-threads. Once the A record arrives (i.e., even if the Z-data 
has not arrived yet), the ZTLS client sends a TCP SYN to the server. 
When the ZTLS client receives both the TCP SYN/ACK (from the 
server) and Z-data (from the DNS resolver), it initiates a ZTLS 
handshake. At the beginning of the ZTLS handshake, the ZTLS 
client has a key to encrypt its application data derived based on 
its ClientHello and Z-data. Obviously, the ZTLS client sends en-
crypted data 1-RTT faster than the TLS client as shown in Figure 1. 

Reduced frst response latency. In TLS 1.3, before a client sends 
initial encrypted data (say, an HTTP GET request) to a particular 
server, it obtains the IP address of the server through the DNS 
system, performs the TCP handshake, and exchanges ClientHello 
and ServerHello with the server to derive an encryption key and 
agree on the cipher suite as shown in Figure 1. 

This procedure illustrates an anti-pattern, called dependency on 
other computation [14], which causes performance degradation. we 
adopt two tactics to counter this anti-pattern as follows9. 

9See Appendix A for details on why these two tactics were chosen. 
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Figure 3: We illustrate the message fow among the ZTLS-
related entities. 

(i) Introducing concurrency: We propose to simultaneously obtain 
the following information of a server: its IP address (A record), 
Dife–Hellman (DH) elements, and certifcate, all of which are 
required for the ZTLS client to establish a secure channel with the 
ZTLS server. This allows the ZTLS client to send encrypted data to 
the ZTLS server without waiting for 1-RTT for the key exchange. 

(ii) Maintaining multiple copies of data: We design Z-data to be 
valid for a certain period so that ZTLS can take advantage of the 
caching efect of DNS resolvers. For this, the DH element in Z-data 
can be cached for a pre-defned period. To provide the same level 
of forward secrecy as TLS 1.3, key_shares (i.e., DH elements) of 
both peers are exchanged during the ZTLS handshake in the same 
way as the resumption procedure of TLS 1.3. The valid period of 
the same DH element should be determined by considering the 
industry practice. Thus, it does not exceed one hour at most [56]. 

Backward compatibility. To support the incremental deployabil-
ity of ZTLS, we devise a mechanism by which a ZTLS client and a 
ZTLS server can identify whether its counterpart supports ZTLS 
or not. First, ZTLS clients can efciently scan whether a server 
supports ZTLS by checking the presence of its Z-data in the DNS. 
Second, we propose a new TLS extension type, “ztls” to indicate 
ZTLS support. ZTLS servers can thus fgure out whether a client 
supports ZTLS with the TLS extension in the ClientHello. 

Changes required to clients, servers, and DNS to adopt ZTLS are 
detailed in Appendix D. 

4.3 Detailed ZTLS design 

Z-data. It has similar information as ServerHello but has addi-
tional features as it is delivered through a diferent channel. Table 1 
shows the structure of Z-data10. Regular characters (e.g., ‘v=’) and 
spaces are used as delimiters, and italics are used as variables and 

10An instance of Z-data is shown in Appendix B. 
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Table 1: Structure of Z-data is illustrated. 

Z-data structure 
v=Ztls_version Validity_period_not_before 
Validity_period_not_after Max_early_data_size Zdata_id 
Key_share_named_group_enum Key_share_key_exchange 
[Not_supported_cipher_suites] B_CERTIFICATE[2] Certifcate 
E_CERTIFICATE[2] Client_certifcate_request 
Signature_scheme Signature_value 

are to be replaced with actual values. ‘[’ and ‘]’ indicate that what 
is written between them can be omitted. 

Z-data contains the following felds: First, Z-data includes a 
server’s cryptographic parameters. TLS 1.3 makes a TLS client and 
a TLS server exchange their cryptographic parameters using the 
Dife–Hellman key exchange during a handshake for key deriva-
tion. ZTLS works almost the same way, but the diference is that 
a ZTLS client obtains cryptographic parameters of a ZTLS server 
through its Z-data. To this end, the Key_share_named_group_enum 
and Key_share_key_exchange felds are included in Z-data. The 
former indicates a DH group defned in TLS 1.3 and the latter is a 
DH public key. To agree on a particular cipher suite, a ZTLS server 
lists cipher suites that it does not support, which is specifed in the 
Not_supported_cipher_suites feld of Z-data. A ZTLS client chooses 
a cipher suite and informs the server of the chosen one through 
ClientHello. 

Second, Z-data includes the Certifcate and the Signature_value 
felds. The former is a ZTLS server’s certifcate, and the latter is 
the server’s signature over Z-data to guarantee its integrity and 
authenticate its owner. We also add the Signature_scheme feld to 
indicate which signature algorithm is used. B_CERTIFICATE and 
E_CERTIFICATE are inserted as delimiters before and after the 
Certifcate feld, respectively. To indicate the RawPublicKey [58] 
certifcate type, a character ‘2’ after the two delimiters can be fol-
lowed. Otherwise, the certifcate type is X.509 [22]. Note that a TLS 
server can optionally request a TLS client to send its authentication 
information. The Client_certifcate_request feld is for this. 

Third, to prevent replay attacks, Z-data specifes its validity pe-
riod by the Validity_period_not_before and Validity_period_not_after 
felds, which are expressed in the ISO 8601 [13] format. 

Lastly, we add more felds for operational purposes. We introduce 
the Ztls_version feld to indicate the version of ZTLS, which is 
needed for backward and forward compatibility. Also, as a ZTLS 
server may operate multiple entries of Z-data for temporal updates 
and spatial constraints, we add the Zdata_id feld. Similar to TLS 
1.3, a ZTLS server declares the maximum length of 0-RTT data to 
mitigate DoS attacks and not to use too much memory, which is 
specifed in Max_early_data_size. 

When a DNS response exceeds a certain limit, ‘DNS-over-
UDP/53’ is reset to ‘DNS-over-TCP/53’ To prevent such an increase 
in setup latency, we split the Z-data into two records. The server’s 
certifcate is transmitted by a TLSA record11, and the rest of the 
felds are by a TXT record12. 

11CERT record is also fne. 
12Exploiting the TXT and TLSA records is a tentative solution, and there can be a new 
record type for the latter. 

ZTLS server. For backward compatibility, a ZTLS server supports 
both ZTLS and TLS protocols. When the ZTLS server receives a 
ClientHello, it checks if there is an extension feld whose exten-
sion_type value is ‘ztls’. If so, it runs the ZTLS protocol; otherwise, 
it falls back to the standard TLS protocol. In the ZTLS protocol, the 
server frst checks whether the application data does not exceed the 
maximum size. Then, it retrieves the corresponding Dife-Hellman 
(DH) elements based on the Zdata_id, reads the client’s DH ele-
ments (key_share), and derives the secret. Employing the HKDF, 
the session key is generated based on the secret and the hand-
shake transcript. If a Z-data-related exception arises, the server 
notifes the client of the exception through the "ztls" extension in 
the ServerHello and ends the handshake. Otherwise, the server 
decrypts the encrypted application data with the session key. If 
the Client_certifcate_request feld is set, the server authenticates 
the client through the client’s certifcate (Certificate) and the 
client’s signature (CertificateVerify). Next, the ZTLS server de-
rives a new session key using HKDF with the ClientHello and 
its ServerHello for forward secrecy and sends its ServerHello, 
EncryptedExtensions (EEs), and encrypted application data to 
the ZTLS client. As shown in Figure 3, the ZTLS server sends its 
certifcate (Certificate) and signature (CertificateVerify) to 
prove that it is the owner of the domain. The server may omit to 
send its Certificate if it uses the same certifcate as the Z-data. 
After that, the ZTS server transmits its Finished to confrm the 
integrity of the ZTLS handshake. Similarly, when the ZTLS client 
receives these messages, it derives the new session key and re-
sponds with its Finished. Last, the ZTLS server verifes the client’s 
Finished to check the integrity of the handshake. 

A ZTLS server is only required to additionally handle secrets (e.g., 
� ’s in �� ’s) corresponding to Zdata_ids compared to a TLS server. 
We recommend performing ZTLS only on truly idempotent requests 
to prevent replay attacks following TLS and QUIC practices [29, 53] 
for 0-RTT Data. 

ZTLS client. A ZTLS client runs three threads. The frst thread 
queries the TLSA record, and the second one queries the TXT record 
and verifes the received Z-data. At the same time, the third thread 
queries the A record and makes a TCP handshake. If the server 
supports ZTLS, it makes a ZTLS handshake. If the server supports 
TLS only, it falls back to a TLS handshake. This is similar to the 
strategy used by Google Chrome to support QUIC [9, 11]. 

In the ZTLS protocol, after validating Z-data, the client 
chooses a cipher suite based on the Not_supported_cipher_suites 
and derives a session key by using HKDF with the 
Key_share_named_group_enum, the Key_share_key_exchange, and 
its own ClientHello. Next, the client encrypts its application data 
with the session key and sends the encrypted application data along 
with the ClientHello including a "ztls" extension containing 
the Zdata_id to a ZTLS server. If the Client_certifcate_request 
feld is set, the ZTLS client transmits its Certificate and 
signature (CertificateVerify) over its ClientHello along 
with its ClientHello and its encrypted data. After that, the 
client receives encrypted application data along with the other 
messages shown in Figure 3 from the server. The client verifes 
the CertificateVerify to check that the server that sent the 
ServerHello is the owner of the domain. The client derives the 
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Table 2: Security properties of data transmitted in ZTLS. 

Data Confdentiality Integrity Authentication 

Z-data ✓ ✓ 

ClientHello ✓ (✓) 
First App data ✓ ✓ ✓ 

ServerHello ✓ ✓ 

EEs ✓ ✓ ✓ 

Rest App data ✓ ✓ ✓ 

EEs: EncryptedExtensions, ✓: Required, (✓): Conditionally required 

new session key using HKDF based on its ClientHello, the 
ServerHello, and the handshake transcript. With the key, it verifes 
the Finished (from the server) to check the integrity of the hand-
shake and decrypts the encrypted data. Likewise, the client sends 
its Finished to the ZTLS server for the integrity of the handshake. 

4.4 Security analysis 
In this section, we review how ZTLS supports the security proper-
ties of the transmitted data (i.e., assets) against the threats consid-
ered in Subsection 4.1. Next, we check whether ZTLS can defend 
against attacks involving the DNS infrastructure. 

Security properties. In this analysis, confdentiality means only 
authorized endpoints can access data, and integrity is guarding 
against improper data modifcation or destruction [3], and authen-
tication is verifying the identity of the creator of data. We organize 
in Table 2 what security properties are required for the data trans-
mitted in ZTLS and review whether ZTLS provides them. 

(i) Z-data: Since Z-data contains only publicly available infor-
mation, confdentiality is not required. The certifcate and signature 
in Z-data guarantee the subject of the certifcate is the domain’s 
owner and that the information is not tampered with. The Valid-
ity_period_not_before and the Validity_period_not_after felds in 
Z-data indicate the validity of the Z-data at a given time. 

(ii) ClientHello: A client’s Finished, which is an HMAC [35], 
confrms the integrity of its ClientHello. Depending on the re-
quest of a ZTLS server, a ZTLS client sends its Certificate and 
signature (CertificateVerify) over its ClientHello, along with 
its ClientHello, to prove that the client is the owner of the certif-
cate. 

(iii) First App data: As mentioned earlier, a ZTLS client and a 
ZTLS server securely share a secret key using the Dife–Hellman 
key exchange method for encrypting/decrypting the First App 
data. This cryptographic information is exchanged between both 
endpoints through Z-data and ClientHello. With the secret key 
(derived by each entity) and the encryption method (from the agreed 
cipher suite), the ZTLS client encrypts and sends data to the ZTLS 
server with 0-RTT. Similar to session resumption of TLS 1.3, ZTLS 
slightly sacrifces forward secrecy13 to enhance performance. Note 
that we can control the risk level of compromising forward secrecy 
with the validity period. TLS 1.2 [24] and TLS 1.3 [45] each have 
a lifetime feld in a session ticket to control their validity period. 

13Forward secrecy ensures that encrypted communications and sessions recorded in 
the past cannot be decrypted even if long-term secret keys are compromised in the 
future [52]. 

Similarly, in ZTLS, the lifetime of Z-data can be controlled through 
the Validity_period_not_before and the Validity_period_not_after 
felds. Thus, if an attacker obtains a server’s private key (its DH 
element), the attacker can only decrypt 0-RTT data created within 
the validity period. This weakness is the same as that of the 0-
RTT data in TLS 1.3 and is practically allowed14. To mitigate the 
risk, ZTLS recommends operating Z-data with a lifetime of less 
than one hour considering the industry practice15 for 0-RTT data. 
Additionally, attackers cannot decrypt the following data because 
the key used to encrypt the frst data (0-RTT data) is changed to an 
ephemeral key by the TLS/ZTLS handshake protocol. Thus, only 
the frst data (typically HTTP GET) sent by clients within an hour is 
exposed to this risk in ZTLS. The integrity of the First App data 
and the authentication of the data creator are guaranteed through 
the negotiated hash algorithm and the derived secret symmetric key. 
As a countermeasure to replay attacks, we recommend performing 
ZTLS only on idempotent requests16, which is the same as 0-RTT 
data practice in TLS17 and QUIC [29, 53]. Fortunately, the frst 
request is typically something idempotent like HTTP GET [56]. 

(iv) ServerHello, EEs, and Rest App Data: The way in which 
the security properties of the rest of the data are supported is the 
same as that of TLS 1.3. The Finished of a server ensures the in-
tegrity of its ServerHello and EncryptedExtensions (EEs), and 
the server’s signature (CertificateVerify) guarantees that the 
server (who sent the ServerHello and the EEs) is the owner of the 
domain. The secret key for the EEs is derived in the above manner 
based on the ClientHello and the ServerHello and the hand-
shake trafc. The Rest App Data is guaranteed its confdentiality, 
integrity, and authentication by the cipher suite and the secret key, 
which are negotiated in the handshake. Since the secret keys are 
derived based on ephemeral elements such as a ClientHello and 
a ServerHello, forward secrecy is satisfed for these encrypted 
data. As nonce, which is derived from the sequence number, is 
maintained independently at both sides, the non-replayability of 
the Rest App Data is provided. 

Attacks to the DNS. As ZTLS exploits the DNS, attacks targeting 
the DNS need to be considered. Here, we do not consider attacks 
that aim to make DNS unavailable since they have the same efect 
on TLS and ZTLS, in which a client is unable to fetch DNS records 
(e.g., A record). Instead, we focus on attacks that forge or replay 
DNS messages. 

DNS poisoning (also known as DNS spoofng) is an attack, in which 
an attacker tampers with DNS caches, causing a client to receive 
an incorrect response [51]. Recall that Z-data includes a signature 
to guarantee its integrity. Thus, a ZTLS client can easily detect if 
Z-data is altered. The ZTLS client that detects the manipulation 
simply falls back to the standard TLS protocol. 

140-RTT Data is considered “too big a win not to do” [5].
15Cloudfare allows the session ticket keys for PSK encryption (which is used for 0-RTT 
data) for an hour [56].
16We recommend ZTLS servers reject a non-idempotent request as the frst data. 
Then, a client falls back to the standard TLS handshake with a server. Note that this 
exception also occurs with 0-RTT DATA in TLS 1.3 practices and is handled in the 
same fashion [56].
17According to TLS 1.3 RFC [45], recording the random number of ClientHello can 
be a countermeasure against replay attacks depending on the server load and service 
characteristics. 
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Figure 4: Experiment settings to compare ZTLS and TLS. 

DNS replay attack is another attack that needs to be considered. In 
this attack, an attacker stores valid DNS responses and reuses them 
to impersonate a legitimate server (or a website). The purpose of 
this attack may be to exploit a leaked private key corresponding to 
the previously used Key_share_key_exchange. However, the attack 
cannot be successful due to the Validity_period_not_before and 
the Validity_period_not_after felds in Z-data. If Z-data is not 
currently valid, ZTLS clients fall back to the standard TLS protocol. 

5 EVALUATION 
We implement a prototype of ZTLS to evaluate its performance. 
We try to see how ZTLS efectively reduces the latency of the frst 
response compared to TLS 1.3. 

5.1 Prototype implementation 
The implementation consists of three modules—ZTLS protocol li-
brary, ZTLS client, and ZTLS server. The ZTLS protocol library 
provides functions for the ZTLS handshake, which is implemented 
based on the OpenSSL [4]. Also, we implement a ZTLS client and 
a ZTLS server, which are applications that use the ZTLS protocol 
library. The ZTLS client has two modes: ZTLS mode and TLS mode. 
We publicly release all the source codes (ZTLS library, client, and 
server)18. 

5.2 Experiment setup 
To measure the frst response latency of ZTLS/TLS with various 

er, we olv
S servers 

network settings among a client, a server, and a DNS res
set up a testbed as shown in Figure 4. First, we deploy ZTL
at three locations employing Amazon Web Services (AWS) — (S1): 
Seoul (AWS Asia Pacifc), (S2): Tokyo (AWS Asia Pacifc), and (S3): 
Ohio (AWS US East) — to measure the latency depending on the 
server location. Each server operates Ubuntu 20.04.3 LTS on an AWS 
EC2 t2.micro machine19. The ZTLS client runs on Ubuntu 20.04.3 
LTS with systemd v251-rc1 that fxes the EDNS0 bug20, which 
operates on a laptop that has a 7th Gen Intel(R) CPU i5-7500 @ 
3.40GHz and 8G RAM. The client is located in Seoul. When the client 
18Please refer to section 1 to see the DOIs of the source codes. 
19AWS EC2 t2.micro machine has an Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz and 
1G RAM. 
20See Appendix C for details. 

sends DNS queries, EDNS0 is applied, but DNSSEC is not applied. 
Also, we set up an authoritative name server that sends Z-data by 
installing Bind9 [1] on Ubuntu 20.04.3 LTS operating on an AWS 
EC2 t2.micro machine. We test the three cases of DNS resolvers—a 
stub resolver, a local resolver in the same LAN as the client, and 
a resolver outside LAN (e.g., Google public DNS)—to measure the 
latency depending on the location of a resolver that caches the 
Z-data. The number right above each straight line between two 
entities in Figure 4 is the one-way latency; for example, the latency 
between the ZTLS client and the ZTLS server in (S1): Seoul is 
4.1ms. In the experiments, a client alternately performs the ZTLS 
connection setup after 1-second sleep and the TLS connection setup 
after 1-second sleep, respectively, for 210 times. This setting is to 
minimize the efect of Internet trafc fuctuation on the performance 
comparison. Here, the response is the application data of fve bytes 
long sent by the ZTLS/TLS server without using any additional 
protocol like HTTP. 

5.3 The frst response latency 
Using the above environment, we conduct experiments to evaluate 
the frst response time of ZTLS/TLS. Here, the frst response time 
is the interval from the moment the client starts the DNS lookup 
for the domain name of the server to the moment that the server’s 
response (i.e., the fve-byte app data) arrives at the client over a 
ZTLS/TLS connection. 

For numerical evaluation, there are three cases depending on 
the cached place of Z-data that a ZTLS client fetches. 

• Case 1. Stub resolver: ([1] in Figure 4), It is located on an OS. 
This case may happen when a user closes her Internet browser 
and then she visits the same ZTLS/TLS server again. 

• Case 2. Local DNS resolver: ([2] in Figure 4), The resolver is 
in the same LAN as the client. This case may happen when a 
user opens his Internet browser for the frst time after turning 
on a laptop. 

• Case 3. Public DNS resolver: ([3] in Figure 4), it is located 
outside the LAN. Google Public DNS is an example. This case 
may happen when a user selects a public DNS resolver. 

Table 3 shows the experiment results21. Looking at the frst 
response times of ZTLS and TLS of case 1 in Table 3, the client 
receives the responses from the server in Seoul (S1) with ZTLS 
earlier than with TLS (average 3.7 ms, and median 3.3 ms faster). In 
the case of Tokyo (S2), ZTLS is faster than TLS by 35.1 (34.3) ms22. 
With the farthest server in Ohio (S3), ZTLS is faster than TLS by 
177.8 (178.0) ms. Clearly, the results show that ZTLS is about 1-RTT 
faster than TLS. When a local resolver is employed (case 2), it shows 
a similar result to case 1; thus, we omit the detailed explanation. 
If the client uses a public DNS resolver (case 3), the overall delays 
are increased due to the distance to the public DNS resolver from 
the client. Nevertheless, the performance advantage of ZTLS is 
similarly observed. The diferences between ZTLS/TLS response 
time are Seoul: 3.9(4.0) ms, Tokyo: 29.3 (33) ms, and Ohio: 172.8 
(175.2) ms. As Internet connectivity becomes pervasive, there would 
be increasingly more networking environments with long RTTs. 

21Please refer to Appendix E to see the tendency of the full results. 
22Unless otherwise stated, the numbers represent the average and median values, the 
median value is shown in parentheses. 
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Table 3: Delays of the frst responses for each case of DNS resolvers and ZTLS server locations (unit: ms). 

Stub Resolver Local (ISP) DNS Resolver Public DNS Resolver 
Case Seoul Tokyo Ohio Seoul Tokyo Ohio Seoul Tokyo Ohio 

ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS 

Median 26.1 29.4 88.4 122.7 366.5 544.5 33.2 38.2 95.9 132.9 367.4 544.2 63.8 67.8 127.5 160.5 405.2 580.4 
Average 25.3 29.0 88.6 123.7 364.3 542.1 33.0 38.4 95.0 133.3 367.5 540.6 66.6 70.5 134.3 163.6 405.4 578.2 

Table 4: DNS lookup times for each record (unit: ms). 6 DISCUSSIONS 

TLS ZTLS 
A A TXT TLSA 

Public DNS Resolver 40.4 
(37.8) 

43.7 
(38.9) 

42.3 
(38.1) 

41.2 
(39.4) 

Local DNS Resolver 6.1 
(5.8) 

7.4 
(8.0) 

6.3 
(6.0) 

7.9 
(7.5) 

Stub Resolver 0.5 
(0.5) 

0.5 
(0.5) 

0.3 
(0.3) 

0.6 
(0.5) 

average (median) 

We believe the results of the server in Ohio (S3) are of importance 
for applications with low latency requirements. 

Next, to observe ZTLS performance more clearly, we analyze the 
performance of each part of ZTLS (in Figure 3). 

(i) DNS lookup time: Table 4 shows the average and median of 
DNS record lookup times for each record required for TLS (i.e., A 
record) and ZTLS (i.e., A, TXT, TLSA record) handshakes, respectively. 
Let us frst analyze the time diference between single DNS queries 
(for TLS) and parallel DNS queries (for ZTLS). Although parallel 
DNS queries are slower by an average of 0∼3.3ms (median 0∼2.2ms), 
this does not afect the overall delay noticeably. The next item for 
analysis is the time it takes to look up a DNS record that is larger 
than the A record, such as a TXT record or a TLSA record23. We 
design the structure of Z-data in such a way that the records for 
ZTLS do not sufer truncated responses. Thus, the lookup speed to 
obtain the three records (in parallel) for ZTLS is similar to that of 
TLS which fetches only the A record. 

(ii) Handshake time: Let us now see how fast the ZTLS handshake 
is performed compared to the TLS one. To answer this, we measure 
the handshake time of each protocol. When a client uses its local 
DNS resolver, the ZTLS handshake is faster than the TLS handshake 
across all server locations; Seoul: 8.1 (8.2) ms, Tokyo: 38.5 (38.4) ms, 
Ohio: 174.2 (177.1) ms. This result reveals that the ZTLS handshake 
is about 1-RTT (Seoul: 8.2ms, Tokyo: 39.8ms, Ohio: 180.6ms, which 
is shown in Figure 4) faster than the TLS handshake. The relative 
ZTLS handshake gains of the other cases are as follows— the public 
DNS Resolver case (Seoul: 4.5 (5.2) ms, Tokyo: 28.5 (33.3) ms, Ohio: 
176.1 (176.5) ms) and the stub DNS Resolver case (Seoul: 3.2 (3.8) 
ms, Tokyo: 35.4 (34.8) ms, and Ohio: 177.0 (177.5) ms). 

The above results show that leveraging the DNS (i.e., fetching 
TXT and TLSA records for Z-data) does not impose additional delays 
to ZTLS. Also, by exploiting the DNS, the ZTLS handshake reduces 
1-RTT compared to TLS one, which efectively reduces the frst 
response latency. 
23Each response message size in the experiment is as follows. A record: 63 bytes, TXT 
record: 555 bytes, and TLSA record: 759 bytes. 

DNS Time To Live (TTL) modifcation. Although it is a minor 
operational issue, we learn that some aberrant DNS resolvers per-
form cache updates not diligently when the TTLs of the cached 
records expire [16]. We also know that since the ECH protocol, 
which allows endpoints to share public keys through the DNS, can-
not easily discard expired keys, it struggles with control of forward 
secrecy [12]. Thus, we add a validity period into Z-data. ZTLS 
clients can check the validity of Z-data, and if it is not valid, it 
falls back to standard TLS. Therefore, in ZTLS, expired keys can 
be easily ignored, and forward secrecy can also be controlled. To 
avoid meaningless verifcation failures, ZTLS recommends setting 
the TTL slightly shorter than the end of the validity period and 
employing multiple Z-data entries in an overlapping fashion. 

Burden to DNS. For ZTLS, DNS resolvers have to respond to 
clients with TXT and TLSA records in addition to A records, which 
incurs a 200% increase in the number of packets at worst. However, 
TTL values of A records of popular sites (e.g., google.com) is 5 
minutes and our recommendation for TTL values is 60 minutes. 
Thus, the increase in the number of packets exchanged between 
stub resolvers and DNS resolvers is 16.7% at best. Furthermore, 
DNS resolvers and authoritative name servers should additionally 
exchange TXT and TLSA records. The increase would be 16.7% as 
they would be exchanged by the TTL cycles. Note that the burden 
of ZTLS is similar to techniques leveraging DNS like ECH [46]. 

Z-data prefetching. Since Z-data is designed to be disseminated 
by any system regardless of its trustworthiness, there is no conf-
dential information in it. Thus, to enhance performance, Z-data 
can be freely cached and prefetched by clients and DNS resolvers 
as similar to [54]. 

7 CONCLUSION 
Most online services rely on TLS for secure communications. The 
security features of TLS require 1-RTT latency when establishing 
an encrypted session between a client and a server. In this paper, 
we propose ZTLS, which is the frst approach that exploits the DNS 
to enable clients to send encrypted data with 0-RTT delay. For this 
purpose, we devise a new data structure, dubbed Z-data, to securely 
and efciently disseminate a server’s cryptographic information to 
its clients over the DNS infrastructure. Also, to support incremental 
deployment, ZTLS is designed to satisfy backward compatibility 
with the standard TLS protocol. We implement a prototype of ZTLS 
to demonstrate the feasibility of our design. Our prototype-based 
experiments show that ZTLS efectively reduces the 1-RTT delay 
for the frst response from a server compared to TLS. 
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A ARCHITECTURAL TACTICS CONSIDERED 
WHEN DESIGNING ZTLS 

We discover a dependency on other computation anti-pattern [14], 
which causes performance degradation, in the necessary procedure 
before sending an initial HTTPS request. 

Common tactics to solve the anti-pattern are controlling resource 
demands and managing resources. The former is a method of reduc-
ing resource demands through algorithm optimization or degrada-
tion of the quality of service, which is not relevant to the problem 
setting of this paper. Thus, We focus on managing resources. 

Tactics typically used in the managing resources category in-
clude increasing resources, introducing concurrency, running multiple 
copies of computations, maintaining multiple copies of data, bound-
ing queue sizes, and scheduling resources efciently [14]. Among 
these approaches, increasing resources and running multiple copies 
of computations cannot be used due to the cost of operating addi-
tional machines. Also, bounding queue sizes and scheduling resources 
are not suitable for the problem domain of designing a handshake 
protocol. We adopt two techniques: introducing concurrency and 
maintaining multiple copies of data. 

B AN INSTANCE OF Z-DATA 
Among the felds of Z-data in ZTLS, the Certifcate is delivered as 
a TLSA record, and the rest of the data is delivered as a TXT record. 
Table 5 is an instance of Z-data excluding the Certifcate feld in a 
TXT record. 

Table 5: An instance of Z-data in a TXT record. 

Z-data instance (TXT record) 
" v=ztls1 " " 20211228035822z " " 20220108035822z " " 128000 " " 10000 " 
" 29 " " MCowBQYDK2VuAy EANQ9MK/3Cm4igzj+cdzQLzzEwRAOcGs 
jpjbGF/+yVzlY= " " N " " 2052 " " ozJjh2jihq2wWVdNLbwP6yISuvv 
5pX5zfyZp6XZBjawp/LIv9oSKRMkghcKPHYWk MGpLBx5dw/ol4aBb 
g+/0DavS9HmeNB0YyHEoou37qLKnHBKh/fp8Tu7NeEXJxG2I lnIAn6 
0ITnd3v/X7dEDmUEeB/y1c7A4XQjgIn3nNYES3O8EMbi4SEMyU1h9Y 
ds2V " " c94cvKaxyYK80k02h9oPN6iiO5HVtDXmgPmYEFRQUHDGnG 
TORLXSJShhKl6fODZH BZdjh+PYTfda3Xp/IohmjHUylf9aBasSqirzX6 
4HeNwOTn5yxDGacHRGITGsqIwB tJ1iQ6kMw5NALq9LQFA 6Bg== " 

C THE EDNS0 BUG IN UBUNTU OS 
During the experiment setup, we found a bug in systemd-resolved 
of Ubuntu 20.04.3 LTS. The bug is that the maximum size of a 
UDP payload is set to 512 bytes. We found out that the bug had 
been reported to the systemd-resolved development community and 
had been fxed in a pre-release version, v251-rc1. We adopted the 
fx in our experimental settings. You can view the patch contents 
and source at the following link — https://github.com/systemd/ 
systemd/commit/526fce9 and download the relevant update from 
the following link — https://github.com/systemd/systemd/releases/ 
tag/v251-rc1. 

D CHANGES REQUIRED TO CLIENTS, 
SERVERS, AND DNS 

Note that ZTLS is incrementally deployable as it is designed in 
a backward-compatible fashion. Furthermore, changing clients, 
servers, and DNS is simple. First, the client and server can use 
ZTLS by upgrading the TLS library, where ZTLS is implemented, 
with a minor change on the client/server applications. The only 
change required for the client application is to query DNS for the 
IP address and Z-data together and provide the Z-data to the TLS 
library. The server application needs interfaces to access Zdata-
related keys, which are similar to the ones to access Session Ticket 
Keys. Note that there are no changes required to DNS applications. 
Authoritative name servers only need to provide TLSA and TXT 
records. 

E THE TENDENCY OF THE FIRST RESPONSE 
TIMES IN THE EXPERIMENT 

Despite some jitters, we can observe that ZTLS provides a tendency 
for shorter response time than TLS in the experiment results which 
are plotted in Figure 5. 
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