
ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS
handshake

Sangwon Lim Hyeonmin Lee Hyunsoo Kim
Seoul National University Seoul National University Seoul National University
Seoul, Republic of Korea Seoul, Republic of Korea Seoul, Republic of Korea
sangwonlim@snu.ac.kr min0921110@snu.ac.kr wayles@snu.ac.kr

Hyunwoo Lee Ted “Taekyoung” Kwon
Korea Institute of Energy Technology Seoul National University

(KENTECH) Seoul, Republic of Korea
Naju, Republic of Korea tkkwon@snu.ac.kr
hwlee@kentech.ac.kr

ABSTRACT
Establishing secure connections fast to end-users is crucial to online
services. However, when a client sets up a TLS session with a server,
the TLS handshake needs one round trip time (RTT) to negotiate a
session key. Additionally, establishing a TLS session also requires
a DNS lookup (e.g., the A record lookup to fetch the IP address
of the server) and a TCP handshake. In this paper, we propose
ZTLS to eliminate the 1-RTT latency for the TLS handshake by
leveraging the DNS. In ZTLS, a server distributes TLS handshake-
related data (i.e., Dife-Hellman elements), dubbed Z-data, as DNS
records. A ZTLS client can fetch Z-data by DNS lookups and derive
a session key. With the session key, the client can send encrypted
data along with its ClientHello, achieving 0-RTT. ZTLS supports
incremental deployability on the current TLS-based infrastructure.
Our prototype-based experiments show that ZTLS is 1-RTT faster
than TLS in terms of the frst response time.

CCS CONCEPTS
• Security and privacy → Web protocol security; Security
protocols.

KEYWORDS
Transport Layer Security, TLS, Performance, Latency

ACM Reference Format:
Sangwon Lim, Hyeonmin Lee, Hyunsoo Kim, Hyunwoo Lee, and Ted “Taeky-
oung” Kwon. 2023. ZTLS: A DNS-based Approach to Zero Round Trip Delay
in TLS handshake. In Proceedings of the ACM Web Conference 2023 (WWW
’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3543507.3583516

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583516

1 INTRODUCTION
As online service users are sensitive to latency in responses from
servers [17, 59], it is crucial for content providers to provide low-
latency services. According to [50], Amazon fnds that every 100ms
of latency costs them a 1% drop in sales, and Google fnds that an
extra 0.5 seconds for generating search page drops trafc by 20%.
Also, it is reported that users tend to visit a website less often if it is
slower than a close competitor by more than 250 milliseconds [42].

With the growing concerns about security and privacy in online
communications, Transport Layer Security (TLS) [45] has become
the de facto standard to protect user privacy and prevent tamper-
ing [2]. However, TLS requires one round-trip to establish a secure
session between a client and a server, in addition to a DNS [8]
lookup and a TCP handshake [26]. Thus, it is challenging to reduce
the delay in setting up a TLS session for user satisfaction [18].

To address such a challenge, many approaches have been pro-
posed to reduce the latency of the TLS handshake. After a com-
prehensive analysis, we fnd that the approaches in the literature
are classifed into three categories. First, some approaches [27, 45]
reduce the number of round-trips of the TLS handshake. The ap-
proaches [38, 39] in the second category attempt to send the appli-
cation data with the handshake messages simultaneously. Third,
Bohannon [15] seeks to reduce the length of a round-trip time (RTT)
by placing a proxy near a client.

In this paper, we propose a novel approach, ZTLS, that leverages
the DNS to reduce 1-RTT in the TLS handshake. As a DNS lookup
by a client is required before the TLS handshake, our main idea is
that if a server delivers its cryptographic information (e.g., Dife-
Hellman elements for a key negotiation) simultaneously with its
IP address through DNS records, 1-RTT can be reduced in the TLS
handshake.

To this end, we design Z-data that contains a server’s crypto-
graphic information, which can be published in advance to the
server’s authoritative DNS server. Z-data also includes informa-
tion such as a signature and a certifcate, to provide authentication
for its issuer (i.e., domain) and integrity of itself without addi-
tional mechanisms such as DNSSEC [48]1. Before initiating the TLS
handshake, a client fetches a server’s IP address as well as Z-data

1As of December 2016, less than 1% of .com, .org, and .net sites have deployed DNSSEC,
among which about one-third are not working properly [28].

2360

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3543507.3583516
https://doi.org/10.1145/3543507.3583516
mailto:permissions@acm.org
mailto:hwlee@kentech.ac.kr
mailto:tkkwon@snu.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583516&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lim et al.

simultaneously2. With Z-data, a client can generate a session key
to encrypt its data and send “encrypted” application data to the
server with a 0-RTT delay. In this way, ZTLS efectively reduces
the latency to establish a secure channel compared to TLS, which
provides users with a faster response.

Furthermore, we design ZTLS to be backward compatible. A ZTLS
client determines whether a connecting server supports ZTLS by
whether the Z-data of the server exists in the DNS, and a ZTLS
server decides whether it conducts ZTLS or not, based on the pres-
ence of an extension for ZTLS in the received ClientHello.

We summarize the contributions of this paper as follows.
• We design a novel technique to enable clients can send en-
crypted data with a 0-RTT delay. ZTLS is the frst approach
that leverages the DNS to reduce network latency in the TLS
handshake while supporting backward compatibility with the
standard TLS protocol.

• We implement a prototype of ZTLS and publicly release the
source codes3.

• To show the feasibility of ZTLS, we conduct a comprehensive
evaluation and show that ZTLS reduces 1-RTT4 of the latency
required for a client to get the frst application data from a
server.

2 BACKGROUND
When a TLS client (e.g., a browser) intends to send encrypted ap-
plication data to a TLS server, the client should take several steps
before sending the data (see Figure 1). First, the client sends a DNS
query to a DNS resolver to obtain the IP address of a server of
interest. Next, the client and the server make a TCP connection
by performing the three-way TCP handshake. Finally, on top of
the TCP connection, a TLS session is established through the TLS
handshake.

Domain Name System (DNS). The DNS is a globally distributed
database that maps domains to their associated information (using
DNS records [8]), and the information (i.e., DNS records) is provided
through its authoritative name server. Usually, the authoritative
name server of a domain is close to the domain’s other servers
like web and mail servers; however, the name server may not be
close to its potential clients. On the client side, DNS resolvers send
DNS queries recursively from the root name server down to the
authoritative name server on behalf of client applications. They
also cache the results of the DNS queries for a certain period.

One of the most important DNS records is an A record that
contains the IPv4 address of a domain (i.e., its server). As shown
in Figure 1, a TLS client frst fetches the server’s A record to obtain
its IP address. In addition to A, there are many other DNS records
with their own purposes. For instance, a TLSA record [31] contains a
server’s certifcate or public key, and a TXT record [8] was originally
intended for human-readable notes; however, it is also used to store
machine-readable data such as security information [33, 36, 37, 43].
2DNS lookups can be conducted in parallel.
3ZTLS library — https://doi.org/10.5281/zenodo.7597964. ZTLS client and server —
https://doi.org/10.5281/zenodo.7597982.
4Averaged round trip times toward Alexa top 1M sites over wired networks are Eastern
N. America: 51.7ms, Western N. America 61.2ms, South America: 102.9ms, Western
Europe: 40.5ms, South Africa 138.1ms, East Asia: 120.9ms, South East Asia: 136.2, and
Oceania: 126.6 [40]. In wireless environments such as 3G, RTTs are usually longer [44].

1 / 35

TLS

Client

TLS

ServerDNS

Query A record

IP address

SYN

SYN+ACK

ACK

ClientHello, + key_share

ServerHello, + key_share,

EncryptedExtensions,

Certificate, CertificateVerify, Finished

Finished

< TLS connection establishment >

Encrypted

App Data

DNS Message

TCP Handshake

TLS Handshake

+ Indicates noteworthy extensions sent in the previously noted message.

Figure 1: A client frst gets a server’s IP address from DNS.
Next, the client and the server establish a TCP connection.
Finally, they establish a TLS session over the TCP connection.

When sending a query/response for a DNS record, the ‘DNS-over-
UDP/53’ protocol [8] is used by default. The maximum message
size of this protocol was 512 bytes at the time of its design but
became 4,096 bytes after EDNS [23] appeared in 1999. However, the
maximum transmission unit (MTU) (The default is 1,500 bytes5) [7]
is the practical limit. This is because if a DNS response size exceeds
this limit, IP fragmentation [6] occurs and the response is retrans-
mitted with the ‘DNS-over-TCP/53’ protocol [8], which results in a
signifcant delay.

Transport Layer Security (TLS). TLS provides a secure channel
between two communicating endpoints: a TLS client and a TLS
server. Security properties of TLS include server authentication6,
confdentiality, and integrity. First, server authentication means
that a client should be able to authenticate a server during a TLS
handshake. A TLS server sends its Certificate and its signature
(CertificateVerify) over the TLS handshake. By verifying the
signature, the client authenticates the server. Second, confdentiality
and integrity mean that no one other than the two endpoints can
read/modify/write data exchanged between them. To this end, both
TLS endpoints negotiate the encryption method (e.g., AES-256) and
hash method (e.g., SHA-256) through the TLS handshake. They also
establish a session key employing an HMAC-based Extract-and-
Expand Key Derivation Function (HKDF) [34] during the handshake.
From TLS 1.3 [45], it is mandatory for TLS endpoints to use the
Ephemeral Dife-Hellman Key Exchange method [30] to provide
forward secrecy7 [19]. Overall, a TLS handshake entails 1-RTT
overhead in TLS 1.3 (see Figure 1).
5In practice, the recommended maximum payload size value is 1,280-1,410 bytes [23].
6Client authentication is optional.
7It guarantees the session key is not compromised even if the related long-term key is
compromised.

2361

https://doi.org/10.5281/zenodo.7597964
https://doi.org/10.5281/zenodo.7597982

ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS handshake WWW ’23, April 30–May 04, 2023, Austin, TX, USA

3 RELATED WORK

TLS handshake latency reduction. The TLS 1.3 handshake [45]
reduces the number of RTTs to one in contrast to two RTTs in the
TLS 1.2 handshake [24]. There is also a simplifed TLS handshake to
establish a subsequent session in a shorter time compared to a full
handshake. There are a couple of simplifcation mechanisms. First,
in Session ID Resumption [24], a client uses the session ID, provided
by a server in the frst session, to resume the session. The server
should keep the state mapped to the session ID. Second, in Session
Ticket Resumption [27, 49], a client employs the session ticket
encrypted by a key known only to a server. This ticket contains
the session key and other information necessary to resume the
session. Thus, the server does not need to maintain session states
in its storage. TLS endpoints can arrange a Pre-Shared Key (PSK),
which includes a database lookup key like Session ID Resumption
or a self-encrypted and self-authenticated value like Session Ticket
Resumption [45]. The PSK mode supports 0-RTT Data, which means
a client can transmit encrypted application data (so-called "early
data") along with a PSK on the frst fight [45].

In TLS Snap Start [38], a client sends encrypted application
data without a PSK on the frst fight. For subsequent TLS con-
nections, a client generates a ServerHello value based on the
previous ServerHello and a specifc rule, derives a session key
using a ClientHello and the ServerHello, encrypts the applica-
tion data based on the key, and transmits the data along with the
ClientHello and the ServerHello on the frst fight.

In TLS False Start [39], a client transmits encrypted application
data 1-RTT faster than the standard TLS 1.2 handshake. In TLS 1.2, a
client sends application data after the TLS handshake is completed,
while in TLS False Start, a client sends the data after receiving
ServerHelloDone before Server’s Finished arrives.

In addition, there is a study that utilizes a proxy for TLS hand-
shakes. A patent from Facebook [15] proposes a mechanism that
a proxy device located near a user negotiates cipher suites on be-
half of its principal server. In this way, the delay of the TLS 1.2
handshake can be reduced.

TCP handshake latency reduction. TCP Fast Open (TFO) [21]
removes the 1-RTT required for the TCP handshake; thus, it can
be used to accelerate TLS session establishment [10, 20, 47]. In
TFO, a server shares a TFO cookie in the initial TCP connection
with a client, and the client utilizes the cookie in the subsequent
connections.

QUIC [32] runs the TLS handshake over UDP [55]; that is, it
initiates the cryptographic negotiation without the TCP handshake.
Thus, it can also accelerate the completion of the TLS handshake.

Takeaway. We get the following lessons from the literature:

• Several approaches such as 0-RTT Data and TLS Snap Start
send encrypted application data with information indicating a
pre-shared key or some information from which a key can be
derived.

• It would be desirable if we can accelerate setting up the frst
TLS session (not to mention subsequent sessions). Most of the
approaches [24, 27, 38, 45, 49] cannot be applied for establish-
ing the frst TLS session. Thus, their usage can be limited as

the majority of HTTPS connections are reported to be the frst
sessions, not session resumptions [53].

• A proxy near clients can be used to reduce the setup la-
tency [15]. This approach achieves its goal by reducing the
physical distance for communications; however, it requires
extra entities, which is costly and difcult to deploy and main-
tain.

Based on the above lessons, we decide to fnd a way to pass
information to a client so that the client can derive a session key
even before contacting the server. To this end, we turn our attention
to the DNS as (1) the DNS lookup is usually performed before the
TLS protocol, (2) there are many DNS record types, some of which
can be fexibly used, and (3) the DNS infrastructure can disseminate
server-related data at some points close to clients.

TLS enhancement leveraging the DNS. Several techniques [31,
46] have been proposed employing the DNS to make TLS more
privacy-preserving and security-hardening. TLS Encrypted Client
Hello (ECH) [46] is devised to protect the privacy of sensitive in-
formation (i.e., domain name) in the ClientHello. DANE [31] is
introduced to mitigate the issue of fraudulent certifcates. However,
no approaches are presented to enhance the performance of the
TLS handshake.

4 ZTLS HANDSHAKE DESIGN
This section describes ZTLS. We frst present goals and a threat
model that we consider in designing ZTLS. Then, we provide an
overview of ZTLS, followed by its details.

4.1 Design considerations

Design goals. In designing ZTLS, we take into account the follow-
ing goals:

• Reduced frst response latency: A ZTLS client receives the
frst response faster than TLS 1.3 with a ZTLS server, and it
has the same delay as TLS 1.3 with a TLS 1.3 server.

• Backward compatibility: Both a ZTLS client and a ZTLS
server should be able to fall back to the TLS protocol if their
counterpart does not support ZTLS.

Threat model. We assume a Dolev-Yao attacker [25] that fully con-
trols the network. That is, the attacker can receive all the messages
from the participating parties, and can modify, drop, reorder, or
inject messages. However, the attacker is computationally bounded.
For instance, the attacker can decrypt encrypted messages only
if it has the corresponding encryption key. The attacker can also
launch DNS-related attacks such as DNS poisoning [57]. We as-
sume all the related parties are available; that is, we do not consider
resource-exhaustion attacks [41].

4.2 Overview
We design ZTLS based on the TLS 1.3 handshake. ZTLS leverages the
DNS system to remove the 1-RTT of TLS handshake (see Figure 2).

○1 A ZTLS server uploads information dubbed Z-data to its
authoritative name server 8.

8Another server with one of the domain’s certifcates and its private key can also make
and upload Z-data to the authoritative name server.

2362

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lim et al.

3 / 35

Finished

Authoritative

Name Server

ZTLS ServerZTLS Client

DNS Resolver

Z-data

Key Share

Cipher Suites

Certificate

…

Upload Z-data

(e.g., DNS record)

Fetch Z-data

Cache Z-data

Fetch Z-data

ClientHello, + key_share,

+ ztls, Encrypted App Data

①

②

③

④

Encrypted App Data

⑥

⑤

DNS

ZTLS

+ Indicates noteworthy extensions sent in the previously noted message.

* Indicates situation-dependent messages that are not always sent.

ServerHello, + key_share,

+ ztls, EncryptedExtensions,

Certificate*, CertificateVerify

Finished, Encrypted App Data

Figure 2: An overview of ZTLS operations is shown. A
ZTLS client sends the frst encrypted data along with its
ClientHello with 0-RTT.

○2 DNS resolvers fetch and cache Z-data.
○3 A ZTLS client obtains Z-data from a DNS resolver.
○4 The client generates a session key from the Z-data and

the information in its ClientHello, and hence sends its en-
crypted application data along with the ClientHello. In the
ClientHello, there is an extension: {extension_type=ztls;
extension_data=Zdata_id }. In this way, the ZTLS client sends
its encrypted application data to the ZTLS server with 0-RTT
delay.

○5 The server responds to the ClientHello with a
ServerHello and transmits its encrypted application
data along with the other messages. The ServerHello
includes a "ztls" extension to confrm the selected Zdata_id
or to handle exceptions (e.g., Zdata_id in the ClientHello
is expired). If the server uses the same certifcate as the
Z-data, it may omit the certifcate transmission.

○6 If a Z-data-related exception occurs, the ZTLS client falls
back to the standard TLS handshake. Otherwise, the ZTLS
handshake is fnalized with exchanging Finished messages.

The overall interactions among ZTLS-related entities are shown
in Figure 3. First, a ZTLS client queries a DNS resolver to obtain the
IP address and Z-data of a server of interest simultaneously using
multi-threads. Once the A record arrives (i.e., even if the Z-data
has not arrived yet), the ZTLS client sends a TCP SYN to the server.
When the ZTLS client receives both the TCP SYN/ACK (from the
server) and Z-data (from the DNS resolver), it initiates a ZTLS
handshake. At the beginning of the ZTLS handshake, the ZTLS
client has a key to encrypt its application data derived based on
its ClientHello and Z-data. Obviously, the ZTLS client sends en-
crypted data 1-RTT faster than the TLS client as shown in Figure 1.

Reduced frst response latency. In TLS 1.3, before a client sends
initial encrypted data (say, an HTTP GET request) to a particular
server, it obtains the IP address of the server through the DNS
system, performs the TCP handshake, and exchanges ClientHello
and ServerHello with the server to derive an encryption key and
agree on the cipher suite as shown in Figure 1.

This procedure illustrates an anti-pattern, called dependency on
other computation [14], which causes performance degradation. we
adopt two tactics to counter this anti-pattern as follows9.

9See Appendix A for details on why these two tactics were chosen.

2 / 35

ZTLS

Client

ZTLS

ServerDNS

(Concurrent) Query

A record, Z-data record

IP address,

Z-data

SYN

SYN+ACK

ACK

ClientHello, + key_share,

+ ztls, Encrypted App Data

ServerHello, + key_share, + ztls,

EncryptedExtensions,

Certificate*, CertificateVerify, Finished,

Encrypted App Data

Finished

< TLS connection establishment >

Encrypted

App Data

DNS Message

TCP Handshake

ZTLS Handshake

+ Indicates noteworthy extensions sent in the previously noted message.
* Indicates situation-dependent messages that are not always sent.

Figure 3: We illustrate the message fow among the ZTLS-
related entities.

(i) Introducing concurrency: We propose to simultaneously obtain
the following information of a server: its IP address (A record),
Dife–Hellman (DH) elements, and certifcate, all of which are
required for the ZTLS client to establish a secure channel with the
ZTLS server. This allows the ZTLS client to send encrypted data to
the ZTLS server without waiting for 1-RTT for the key exchange.

(ii) Maintaining multiple copies of data: We design Z-data to be
valid for a certain period so that ZTLS can take advantage of the
caching efect of DNS resolvers. For this, the DH element in Z-data
can be cached for a pre-defned period. To provide the same level
of forward secrecy as TLS 1.3, key_shares (i.e., DH elements) of
both peers are exchanged during the ZTLS handshake in the same
way as the resumption procedure of TLS 1.3. The valid period of
the same DH element should be determined by considering the
industry practice. Thus, it does not exceed one hour at most [56].

Backward compatibility. To support the incremental deployabil-
ity of ZTLS, we devise a mechanism by which a ZTLS client and a
ZTLS server can identify whether its counterpart supports ZTLS
or not. First, ZTLS clients can efciently scan whether a server
supports ZTLS by checking the presence of its Z-data in the DNS.
Second, we propose a new TLS extension type, “ztls” to indicate
ZTLS support. ZTLS servers can thus fgure out whether a client
supports ZTLS with the TLS extension in the ClientHello.

Changes required to clients, servers, and DNS to adopt ZTLS are
detailed in Appendix D.

4.3 Detailed ZTLS design

Z-data. It has similar information as ServerHello but has addi-
tional features as it is delivered through a diferent channel. Table 1
shows the structure of Z-data10. Regular characters (e.g., ‘v=’) and
spaces are used as delimiters, and italics are used as variables and

10An instance of Z-data is shown in Appendix B.

2363

ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS handshake WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Structure of Z-data is illustrated.

Z-data structure
v=Ztls_version Validity_period_not_before
Validity_period_not_after Max_early_data_size Zdata_id
Key_share_named_group_enum Key_share_key_exchange
[Not_supported_cipher_suites] B_CERTIFICATE[2] Certifcate
E_CERTIFICATE[2] Client_certifcate_request
Signature_scheme Signature_value

are to be replaced with actual values. ‘[’ and ‘]’ indicate that what
is written between them can be omitted.

Z-data contains the following felds: First, Z-data includes a
server’s cryptographic parameters. TLS 1.3 makes a TLS client and
a TLS server exchange their cryptographic parameters using the
Dife–Hellman key exchange during a handshake for key deriva-
tion. ZTLS works almost the same way, but the diference is that
a ZTLS client obtains cryptographic parameters of a ZTLS server
through its Z-data. To this end, the Key_share_named_group_enum
and Key_share_key_exchange felds are included in Z-data. The
former indicates a DH group defned in TLS 1.3 and the latter is a
DH public key. To agree on a particular cipher suite, a ZTLS server
lists cipher suites that it does not support, which is specifed in the
Not_supported_cipher_suites feld of Z-data. A ZTLS client chooses
a cipher suite and informs the server of the chosen one through
ClientHello.

Second, Z-data includes the Certifcate and the Signature_value
felds. The former is a ZTLS server’s certifcate, and the latter is
the server’s signature over Z-data to guarantee its integrity and
authenticate its owner. We also add the Signature_scheme feld to
indicate which signature algorithm is used. B_CERTIFICATE and
E_CERTIFICATE are inserted as delimiters before and after the
Certifcate feld, respectively. To indicate the RawPublicKey [58]
certifcate type, a character ‘2’ after the two delimiters can be fol-
lowed. Otherwise, the certifcate type is X.509 [22]. Note that a TLS
server can optionally request a TLS client to send its authentication
information. The Client_certifcate_request feld is for this.

Third, to prevent replay attacks, Z-data specifes its validity pe-
riod by the Validity_period_not_before and Validity_period_not_after
felds, which are expressed in the ISO 8601 [13] format.

Lastly, we add more felds for operational purposes. We introduce
the Ztls_version feld to indicate the version of ZTLS, which is
needed for backward and forward compatibility. Also, as a ZTLS
server may operate multiple entries of Z-data for temporal updates
and spatial constraints, we add the Zdata_id feld. Similar to TLS
1.3, a ZTLS server declares the maximum length of 0-RTT data to
mitigate DoS attacks and not to use too much memory, which is
specifed in Max_early_data_size.

When a DNS response exceeds a certain limit, ‘DNS-over-
UDP/53’ is reset to ‘DNS-over-TCP/53’ To prevent such an increase
in setup latency, we split the Z-data into two records. The server’s
certifcate is transmitted by a TLSA record11, and the rest of the
felds are by a TXT record12.

11CERT record is also fne.
12Exploiting the TXT and TLSA records is a tentative solution, and there can be a new
record type for the latter.

ZTLS server. For backward compatibility, a ZTLS server supports
both ZTLS and TLS protocols. When the ZTLS server receives a
ClientHello, it checks if there is an extension feld whose exten-
sion_type value is ‘ztls’. If so, it runs the ZTLS protocol; otherwise,
it falls back to the standard TLS protocol. In the ZTLS protocol, the
server frst checks whether the application data does not exceed the
maximum size. Then, it retrieves the corresponding Dife-Hellman
(DH) elements based on the Zdata_id, reads the client’s DH ele-
ments (key_share), and derives the secret. Employing the HKDF,
the session key is generated based on the secret and the hand-
shake transcript. If a Z-data-related exception arises, the server
notifes the client of the exception through the "ztls" extension in
the ServerHello and ends the handshake. Otherwise, the server
decrypts the encrypted application data with the session key. If
the Client_certifcate_request feld is set, the server authenticates
the client through the client’s certifcate (Certificate) and the
client’s signature (CertificateVerify). Next, the ZTLS server de-
rives a new session key using HKDF with the ClientHello and
its ServerHello for forward secrecy and sends its ServerHello,
EncryptedExtensions (EEs), and encrypted application data to
the ZTLS client. As shown in Figure 3, the ZTLS server sends its
certifcate (Certificate) and signature (CertificateVerify) to
prove that it is the owner of the domain. The server may omit to
send its Certificate if it uses the same certifcate as the Z-data.
After that, the ZTS server transmits its Finished to confrm the
integrity of the ZTLS handshake. Similarly, when the ZTLS client
receives these messages, it derives the new session key and re-
sponds with its Finished. Last, the ZTLS server verifes the client’s
Finished to check the integrity of the handshake.

A ZTLS server is only required to additionally handle secrets (e.g.,
� ’s in �� ’s) corresponding to Zdata_ids compared to a TLS server.
We recommend performing ZTLS only on truly idempotent requests
to prevent replay attacks following TLS and QUIC practices [29, 53]
for 0-RTT Data.

ZTLS client. A ZTLS client runs three threads. The frst thread
queries the TLSA record, and the second one queries the TXT record
and verifes the received Z-data. At the same time, the third thread
queries the A record and makes a TCP handshake. If the server
supports ZTLS, it makes a ZTLS handshake. If the server supports
TLS only, it falls back to a TLS handshake. This is similar to the
strategy used by Google Chrome to support QUIC [9, 11].

In the ZTLS protocol, after validating Z-data, the client
chooses a cipher suite based on the Not_supported_cipher_suites
and derives a session key by using HKDF with the
Key_share_named_group_enum, the Key_share_key_exchange, and
its own ClientHello. Next, the client encrypts its application data
with the session key and sends the encrypted application data along
with the ClientHello including a "ztls" extension containing
the Zdata_id to a ZTLS server. If the Client_certifcate_request
feld is set, the ZTLS client transmits its Certificate and
signature (CertificateVerify) over its ClientHello along
with its ClientHello and its encrypted data. After that, the
client receives encrypted application data along with the other
messages shown in Figure 3 from the server. The client verifes
the CertificateVerify to check that the server that sent the
ServerHello is the owner of the domain. The client derives the

2364

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lim et al.

Table 2: Security properties of data transmitted in ZTLS.

Data Confdentiality Integrity Authentication

Z-data ✓ ✓

ClientHello ✓ (✓)
First App data ✓ ✓ ✓

ServerHello ✓ ✓

EEs ✓ ✓ ✓

Rest App data ✓ ✓ ✓

EEs: EncryptedExtensions, ✓: Required, (✓): Conditionally required

new session key using HKDF based on its ClientHello, the
ServerHello, and the handshake transcript. With the key, it verifes
the Finished (from the server) to check the integrity of the hand-
shake and decrypts the encrypted data. Likewise, the client sends
its Finished to the ZTLS server for the integrity of the handshake.

4.4 Security analysis
In this section, we review how ZTLS supports the security proper-
ties of the transmitted data (i.e., assets) against the threats consid-
ered in Subsection 4.1. Next, we check whether ZTLS can defend
against attacks involving the DNS infrastructure.

Security properties. In this analysis, confdentiality means only
authorized endpoints can access data, and integrity is guarding
against improper data modifcation or destruction [3], and authen-
tication is verifying the identity of the creator of data. We organize
in Table 2 what security properties are required for the data trans-
mitted in ZTLS and review whether ZTLS provides them.

(i) Z-data: Since Z-data contains only publicly available infor-
mation, confdentiality is not required. The certifcate and signature
in Z-data guarantee the subject of the certifcate is the domain’s
owner and that the information is not tampered with. The Valid-
ity_period_not_before and the Validity_period_not_after felds in
Z-data indicate the validity of the Z-data at a given time.

(ii) ClientHello: A client’s Finished, which is an HMAC [35],
confrms the integrity of its ClientHello. Depending on the re-
quest of a ZTLS server, a ZTLS client sends its Certificate and
signature (CertificateVerify) over its ClientHello, along with
its ClientHello, to prove that the client is the owner of the certif-
cate.

(iii) First App data: As mentioned earlier, a ZTLS client and a
ZTLS server securely share a secret key using the Dife–Hellman
key exchange method for encrypting/decrypting the First App
data. This cryptographic information is exchanged between both
endpoints through Z-data and ClientHello. With the secret key
(derived by each entity) and the encryption method (from the agreed
cipher suite), the ZTLS client encrypts and sends data to the ZTLS
server with 0-RTT. Similar to session resumption of TLS 1.3, ZTLS
slightly sacrifces forward secrecy13 to enhance performance. Note
that we can control the risk level of compromising forward secrecy
with the validity period. TLS 1.2 [24] and TLS 1.3 [45] each have
a lifetime feld in a session ticket to control their validity period.

13Forward secrecy ensures that encrypted communications and sessions recorded in
the past cannot be decrypted even if long-term secret keys are compromised in the
future [52].

Similarly, in ZTLS, the lifetime of Z-data can be controlled through
the Validity_period_not_before and the Validity_period_not_after
felds. Thus, if an attacker obtains a server’s private key (its DH
element), the attacker can only decrypt 0-RTT data created within
the validity period. This weakness is the same as that of the 0-
RTT data in TLS 1.3 and is practically allowed14. To mitigate the
risk, ZTLS recommends operating Z-data with a lifetime of less
than one hour considering the industry practice15 for 0-RTT data.
Additionally, attackers cannot decrypt the following data because
the key used to encrypt the frst data (0-RTT data) is changed to an
ephemeral key by the TLS/ZTLS handshake protocol. Thus, only
the frst data (typically HTTP GET) sent by clients within an hour is
exposed to this risk in ZTLS. The integrity of the First App data
and the authentication of the data creator are guaranteed through
the negotiated hash algorithm and the derived secret symmetric key.
As a countermeasure to replay attacks, we recommend performing
ZTLS only on idempotent requests16, which is the same as 0-RTT
data practice in TLS17 and QUIC [29, 53]. Fortunately, the frst
request is typically something idempotent like HTTP GET [56].

(iv) ServerHello, EEs, and Rest App Data: The way in which
the security properties of the rest of the data are supported is the
same as that of TLS 1.3. The Finished of a server ensures the in-
tegrity of its ServerHello and EncryptedExtensions (EEs), and
the server’s signature (CertificateVerify) guarantees that the
server (who sent the ServerHello and the EEs) is the owner of the
domain. The secret key for the EEs is derived in the above manner
based on the ClientHello and the ServerHello and the hand-
shake trafc. The Rest App Data is guaranteed its confdentiality,
integrity, and authentication by the cipher suite and the secret key,
which are negotiated in the handshake. Since the secret keys are
derived based on ephemeral elements such as a ClientHello and
a ServerHello, forward secrecy is satisfed for these encrypted
data. As nonce, which is derived from the sequence number, is
maintained independently at both sides, the non-replayability of
the Rest App Data is provided.

Attacks to the DNS. As ZTLS exploits the DNS, attacks targeting
the DNS need to be considered. Here, we do not consider attacks
that aim to make DNS unavailable since they have the same efect
on TLS and ZTLS, in which a client is unable to fetch DNS records
(e.g., A record). Instead, we focus on attacks that forge or replay
DNS messages.

DNS poisoning (also known as DNS spoofng) is an attack, in which
an attacker tampers with DNS caches, causing a client to receive
an incorrect response [51]. Recall that Z-data includes a signature
to guarantee its integrity. Thus, a ZTLS client can easily detect if
Z-data is altered. The ZTLS client that detects the manipulation
simply falls back to the standard TLS protocol.

140-RTT Data is considered “too big a win not to do” [5].
15Cloudfare allows the session ticket keys for PSK encryption (which is used for 0-RTT
data) for an hour [56].
16We recommend ZTLS servers reject a non-idempotent request as the frst data.
Then, a client falls back to the standard TLS handshake with a server. Note that this
exception also occurs with 0-RTT DATA in TLS 1.3 practices and is handled in the
same fashion [56].
17According to TLS 1.3 RFC [45], recording the random number of ClientHello can
be a countermeasure against replay attacks depending on the server load and service
characteristics.

2365

ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS handshake WWW ’23, April 30–May 04, 2023, Austin, TX, USA

1 / 35

0.0ms
C

S3

S1
1

3

SK Broadband ISP,

Korea

AWS Seoul,

Korea

AWS Ohio,

USA

90.3ms

2.7ms

1.7ms

19.0ms 14.6ms

4.1ms

42

S2

AWS Tokyo,

Japan

Stub Resolver (in OS)
DNS Resolver provided by ISP
Google Public DNS (8.8.8.8)
Authoritative Name Server

ZTLS Client

ZTLS Server

1

2

3

4

C

S

Network Latency

19.9ms

Figure 4: Experiment settings to compare ZTLS and TLS.

DNS replay attack is another attack that needs to be considered. In
this attack, an attacker stores valid DNS responses and reuses them
to impersonate a legitimate server (or a website). The purpose of
this attack may be to exploit a leaked private key corresponding to
the previously used Key_share_key_exchange. However, the attack
cannot be successful due to the Validity_period_not_before and
the Validity_period_not_after felds in Z-data. If Z-data is not
currently valid, ZTLS clients fall back to the standard TLS protocol.

5 EVALUATION
We implement a prototype of ZTLS to evaluate its performance.
We try to see how ZTLS efectively reduces the latency of the frst
response compared to TLS 1.3.

5.1 Prototype implementation
The implementation consists of three modules—ZTLS protocol li-
brary, ZTLS client, and ZTLS server. The ZTLS protocol library
provides functions for the ZTLS handshake, which is implemented
based on the OpenSSL [4]. Also, we implement a ZTLS client and
a ZTLS server, which are applications that use the ZTLS protocol
library. The ZTLS client has two modes: ZTLS mode and TLS mode.
We publicly release all the source codes (ZTLS library, client, and
server)18.

5.2 Experiment setup
To measure the frst response latency of ZTLS/TLS with various

er, we olv
S servers

network settings among a client, a server, and a DNS res
set up a testbed as shown in Figure 4. First, we deploy ZTL
at three locations employing Amazon Web Services (AWS) — (S1):
Seoul (AWS Asia Pacifc), (S2): Tokyo (AWS Asia Pacifc), and (S3):
Ohio (AWS US East) — to measure the latency depending on the
server location. Each server operates Ubuntu 20.04.3 LTS on an AWS
EC2 t2.micro machine19. The ZTLS client runs on Ubuntu 20.04.3
LTS with systemd v251-rc1 that fxes the EDNS0 bug20, which
operates on a laptop that has a 7th Gen Intel(R) CPU i5-7500 @
3.40GHz and 8G RAM. The client is located in Seoul. When the client
18Please refer to section 1 to see the DOIs of the source codes.
19AWS EC2 t2.micro machine has an Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz and
1G RAM.
20See Appendix C for details.

sends DNS queries, EDNS0 is applied, but DNSSEC is not applied.
Also, we set up an authoritative name server that sends Z-data by
installing Bind9 [1] on Ubuntu 20.04.3 LTS operating on an AWS
EC2 t2.micro machine. We test the three cases of DNS resolvers—a
stub resolver, a local resolver in the same LAN as the client, and
a resolver outside LAN (e.g., Google public DNS)—to measure the
latency depending on the location of a resolver that caches the
Z-data. The number right above each straight line between two
entities in Figure 4 is the one-way latency; for example, the latency
between the ZTLS client and the ZTLS server in (S1): Seoul is
4.1ms. In the experiments, a client alternately performs the ZTLS
connection setup after 1-second sleep and the TLS connection setup
after 1-second sleep, respectively, for 210 times. This setting is to
minimize the efect of Internet trafc fuctuation on the performance
comparison. Here, the response is the application data of fve bytes
long sent by the ZTLS/TLS server without using any additional
protocol like HTTP.

5.3 The frst response latency
Using the above environment, we conduct experiments to evaluate
the frst response time of ZTLS/TLS. Here, the frst response time
is the interval from the moment the client starts the DNS lookup
for the domain name of the server to the moment that the server’s
response (i.e., the fve-byte app data) arrives at the client over a
ZTLS/TLS connection.

For numerical evaluation, there are three cases depending on
the cached place of Z-data that a ZTLS client fetches.

• Case 1. Stub resolver: ([1] in Figure 4), It is located on an OS.
This case may happen when a user closes her Internet browser
and then she visits the same ZTLS/TLS server again.

• Case 2. Local DNS resolver: ([2] in Figure 4), The resolver is
in the same LAN as the client. This case may happen when a
user opens his Internet browser for the frst time after turning
on a laptop.

• Case 3. Public DNS resolver: ([3] in Figure 4), it is located
outside the LAN. Google Public DNS is an example. This case
may happen when a user selects a public DNS resolver.

Table 3 shows the experiment results21. Looking at the frst
response times of ZTLS and TLS of case 1 in Table 3, the client
receives the responses from the server in Seoul (S1) with ZTLS
earlier than with TLS (average 3.7 ms, and median 3.3 ms faster). In
the case of Tokyo (S2), ZTLS is faster than TLS by 35.1 (34.3) ms22.
With the farthest server in Ohio (S3), ZTLS is faster than TLS by
177.8 (178.0) ms. Clearly, the results show that ZTLS is about 1-RTT
faster than TLS. When a local resolver is employed (case 2), it shows
a similar result to case 1; thus, we omit the detailed explanation.
If the client uses a public DNS resolver (case 3), the overall delays
are increased due to the distance to the public DNS resolver from
the client. Nevertheless, the performance advantage of ZTLS is
similarly observed. The diferences between ZTLS/TLS response
time are Seoul: 3.9(4.0) ms, Tokyo: 29.3 (33) ms, and Ohio: 172.8
(175.2) ms. As Internet connectivity becomes pervasive, there would
be increasingly more networking environments with long RTTs.

21Please refer to Appendix E to see the tendency of the full results.
22Unless otherwise stated, the numbers represent the average and median values, the
median value is shown in parentheses.

2366

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lim et al.

Table 3: Delays of the frst responses for each case of DNS resolvers and ZTLS server locations (unit: ms).

Stub Resolver Local (ISP) DNS Resolver Public DNS Resolver
Case Seoul Tokyo Ohio Seoul Tokyo Ohio Seoul Tokyo Ohio

ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS ZTLS TLS

Median 26.1 29.4 88.4 122.7 366.5 544.5 33.2 38.2 95.9 132.9 367.4 544.2 63.8 67.8 127.5 160.5 405.2 580.4
Average 25.3 29.0 88.6 123.7 364.3 542.1 33.0 38.4 95.0 133.3 367.5 540.6 66.6 70.5 134.3 163.6 405.4 578.2

Table 4: DNS lookup times for each record (unit: ms). 6 DISCUSSIONS

TLS ZTLS
A A TXT TLSA

Public DNS Resolver 40.4
(37.8)

43.7
(38.9)

42.3
(38.1)

41.2
(39.4)

Local DNS Resolver 6.1
(5.8)

7.4
(8.0)

6.3
(6.0)

7.9
(7.5)

Stub Resolver 0.5
(0.5)

0.5
(0.5)

0.3
(0.3)

0.6
(0.5)

average (median)

We believe the results of the server in Ohio (S3) are of importance
for applications with low latency requirements.

Next, to observe ZTLS performance more clearly, we analyze the
performance of each part of ZTLS (in Figure 3).

(i) DNS lookup time: Table 4 shows the average and median of
DNS record lookup times for each record required for TLS (i.e., A
record) and ZTLS (i.e., A, TXT, TLSA record) handshakes, respectively.
Let us frst analyze the time diference between single DNS queries
(for TLS) and parallel DNS queries (for ZTLS). Although parallel
DNS queries are slower by an average of 0∼3.3ms (median 0∼2.2ms),
this does not afect the overall delay noticeably. The next item for
analysis is the time it takes to look up a DNS record that is larger
than the A record, such as a TXT record or a TLSA record23. We
design the structure of Z-data in such a way that the records for
ZTLS do not sufer truncated responses. Thus, the lookup speed to
obtain the three records (in parallel) for ZTLS is similar to that of
TLS which fetches only the A record.

(ii) Handshake time: Let us now see how fast the ZTLS handshake
is performed compared to the TLS one. To answer this, we measure
the handshake time of each protocol. When a client uses its local
DNS resolver, the ZTLS handshake is faster than the TLS handshake
across all server locations; Seoul: 8.1 (8.2) ms, Tokyo: 38.5 (38.4) ms,
Ohio: 174.2 (177.1) ms. This result reveals that the ZTLS handshake
is about 1-RTT (Seoul: 8.2ms, Tokyo: 39.8ms, Ohio: 180.6ms, which
is shown in Figure 4) faster than the TLS handshake. The relative
ZTLS handshake gains of the other cases are as follows— the public
DNS Resolver case (Seoul: 4.5 (5.2) ms, Tokyo: 28.5 (33.3) ms, Ohio:
176.1 (176.5) ms) and the stub DNS Resolver case (Seoul: 3.2 (3.8)
ms, Tokyo: 35.4 (34.8) ms, and Ohio: 177.0 (177.5) ms).

The above results show that leveraging the DNS (i.e., fetching
TXT and TLSA records for Z-data) does not impose additional delays
to ZTLS. Also, by exploiting the DNS, the ZTLS handshake reduces
1-RTT compared to TLS one, which efectively reduces the frst
response latency.
23Each response message size in the experiment is as follows. A record: 63 bytes, TXT
record: 555 bytes, and TLSA record: 759 bytes.

DNS Time To Live (TTL) modifcation. Although it is a minor
operational issue, we learn that some aberrant DNS resolvers per-
form cache updates not diligently when the TTLs of the cached
records expire [16]. We also know that since the ECH protocol,
which allows endpoints to share public keys through the DNS, can-
not easily discard expired keys, it struggles with control of forward
secrecy [12]. Thus, we add a validity period into Z-data. ZTLS
clients can check the validity of Z-data, and if it is not valid, it
falls back to standard TLS. Therefore, in ZTLS, expired keys can
be easily ignored, and forward secrecy can also be controlled. To
avoid meaningless verifcation failures, ZTLS recommends setting
the TTL slightly shorter than the end of the validity period and
employing multiple Z-data entries in an overlapping fashion.

Burden to DNS. For ZTLS, DNS resolvers have to respond to
clients with TXT and TLSA records in addition to A records, which
incurs a 200% increase in the number of packets at worst. However,
TTL values of A records of popular sites (e.g., google.com) is 5
minutes and our recommendation for TTL values is 60 minutes.
Thus, the increase in the number of packets exchanged between
stub resolvers and DNS resolvers is 16.7% at best. Furthermore,
DNS resolvers and authoritative name servers should additionally
exchange TXT and TLSA records. The increase would be 16.7% as
they would be exchanged by the TTL cycles. Note that the burden
of ZTLS is similar to techniques leveraging DNS like ECH [46].

Z-data prefetching. Since Z-data is designed to be disseminated
by any system regardless of its trustworthiness, there is no conf-
dential information in it. Thus, to enhance performance, Z-data
can be freely cached and prefetched by clients and DNS resolvers
as similar to [54].

7 CONCLUSION
Most online services rely on TLS for secure communications. The
security features of TLS require 1-RTT latency when establishing
an encrypted session between a client and a server. In this paper,
we propose ZTLS, which is the frst approach that exploits the DNS
to enable clients to send encrypted data with 0-RTT delay. For this
purpose, we devise a new data structure, dubbed Z-data, to securely
and efciently disseminate a server’s cryptographic information to
its clients over the DNS infrastructure. Also, to support incremental
deployment, ZTLS is designed to satisfy backward compatibility
with the standard TLS protocol. We implement a prototype of ZTLS
to demonstrate the feasibility of our design. Our prototype-based
experiments show that ZTLS efectively reduces the 1-RTT delay
for the frst response from a server compared to TLS.

2367

https://google.com

ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS handshake WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
The authors would like to appreciate the anonymous reviewers for
their comments to improve our paper. Ted “Taekyoung” Kwon and
Hyunwoo Lee are the co-corresponding authors.

This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the ITRC (Information Technology Re-
search Center) support program (IITP-2021-0-02048) supervised
by the IITP (Institute of Information & Communications Technol-
ogy Planning & Evaluation), and the KENTECH Research Grant
(202200048A). Also, this research was supported by Basic Science
Research Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education (No.2022R1A6A3A0
1087260). Lastly, this work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean government
(MSIT) (NRF-2022R1A2C2011221).

REFERENCES
[1] [n. d.]. BIND9. https://www.isc.org/bind/. Retrieved: 2022-10-12.
[2] [n. d.]. Google Transparency Report. https://transparencyreport.google.com/

https/overview?hl=en. Retrieved: 2022-10-12.
[3] [n. d.]. integrity - Glossary | CSRC - NIST Computer Security Resource Center.

https://csrc.nist.gov/glossary/term/integrity. Retrieved: 2022-10-11.
[4] [n. d.]. OpenSSL. https://www.openssl.org/source/. Retrieved: 2022-10-12.
[5] [n. d.]. Rescorla, E.: TLS 1.3 (2015). http://web.stanford.edu/class/ee380/Abstracts/

151118-slides.pdf. Retrieved: 2022-10-12.
[6] 1981. Internet Protocol. RFC 791. https://doi.org/10.17487/RFC0791
[7] 1984. A Standard for the Transmission of IP Datagrams over Ethernet Networks.

RFC 894. https://doi.org/10.17487/RFC0894
[8] 1987. Domain names - implementation and specifcation. RFC 1035. https:

//doi.org/10.17487/RFC1035
[9] 2015. About enabling QUIC in android. https://groups.google.com/a/chromium.

org/g/proto-quic/c/4fjpJ7hUtgg. Retrieved: 2022-10-12.
[10] 2016. Building a faster and more secure web with TCP Fast Open, TLS False Start,

and TLS 1.3. https://blogs.windows.com/msedgedev/2016/06/15/building-a-
faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/.
Retrieved: 2022-10-12).

[11] 2017. QUIC fallback to TCP scenario. https://groups.google.com/a/chromium.
org/g/proto-quic/c/zo7--OQLQBo. Retrieved: 2022-10-12.

[12] 2018. Encrypt it or lose it: how encrypted SNI works. https://blog.cloudfare.
com/encrypted-sni/. Retrieved: 2022-10-12.

[13] 2019. ISO8601. https://www.iso.org/standard/70907.html. Retrieved: 2022-10-12.
[14] Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in Practice

(3rd ed.). Addison-Wesley Professional.
[15] Philip Lewis Bohannon. 2017. Transport layer security latency mitigation.
[16] Guillaume Bonnoron, Damien Crémilleux, Sravani Teja Bulusu, Xiaoyang Zhu,

and Guillaume Valadon. 2016. Survey and analysis of DNS infrastructures. Research
Report. CNRS. https://hal.archives-ouvertes.fr/hal-01407640

[17] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran, P. Brighten
Godfrey, Gregory Laughlin, Bruce Maggs, and Ankit Singla. 2017. Why Is the
Internet so Slow?!. In Passive and Active Measurement (PAM), Mohamed Ali Kaafar,
Steve Uhlig, and Johanna Amann (Eds.). Springer International Publishing, Cham,
173–187.

[18] Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-
Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, and Michael Welzl.
2016. Reducing Internet Latency: A Survey of Techniques and Their Merits. IEEE
Communications Surveys & Tutorials 18, 3 (2016), 2149–2196. https://doi.org/10.
1109/COMST.2014.2375213

[19] Ran Canetti, Shai Halevi, and Jonathan Katz. 2003. A Forward-Secure Public-Key
Encryption Scheme. In Advances in Cryptology — EUROCRYPT 2003, Eli Biham
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 255–271.

[20] Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and Cristina
Nita-Rotaru. 2019. Secure communication channel establishment: TLS 1.3 (over
TCP fast open) vs. QUIC. In European Symposium on Research in Computer Security.
Springer, 404–426.

[21] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. 2014.
TCP Fast Open. RFC 7413. https://doi.org/10.17487/RFC7413

[22] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,
and William Polk. 2008. Internet X. 509 public key infrastructure certifcate and
certifcate revocation list (CRL) profle. RFC 5280.

[23] Joao da Silva Damas, Michael Graf, and Paul A. Vixie. 2013. Extension Mecha-
nisms for DNS (EDNS(0)). RFC 6891. https://doi.org/10.17487/RFC6891

[24] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. https://doi.org/10.17487/RFC5246

[25] Danny Dolev and Andrew C. Yao. 1983. On the security of public key protocols.
IEEE Transactions on information theory 29, 2 (1983), 198–208.

[26] Wesley Eddy. 2022. Transmission Control Protocol (TCP). RFC 9293. https:
//doi.org/10.17487/RFC9293

[27] Pasi Eronen, Hannes Tschofenig, Hao Zhou, and Joseph A. Salowey. 2008. Trans-
port Layer Security (TLS) Session Resumption without Server-Side State. RFC
5077. https://doi.org/10.17487/RFC5077

[28] Pouyan Fotouhi Tehrani, Eric Osterweil, Jochen H. Schiller, Thomas C. Schmidt,
and Matthias Wählisch. 2021. Security of Alerting Authorities in the WWW: Mea-
suring Namespaces, DNSSEC, and Web PKI. In Proceedings of the Web Conference
2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery,
New York, NY, USA, 2709–2720. https://doi.org/10.1145/3442381.3450033

[29] Alessandro Ghedini. 2019. Even faster connection establishment with
QUIC 0-RTT resumption. https://blog.cloudfare.com/even-faster-connection-
establishment-with-quic-0-rtt-resumption/. Retrieved: 2022-10-12.

[30] Daniel Kahn Gillmor. 2016. Negotiated Finite Field Dife-Hellman Ephemeral
Parameters for Transport Layer Security (TLS). RFC 7919. https://doi.org/10.
17487/RFC7919

[31] Paul E. Hofman and Jakob Schlyter. 2012. The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698. https://doi.org/10.17487/RFC6698

[32] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. https://doi.org/10.17487/RFC9000

[33] Scott Kitterman. 2014. Sender Policy Framework (SPF) for Authorizing Use of
Domains in Email, Version 1. RFC 7208. https://doi.org/10.17487/RFC7208

[34] Dr. Hugo Krawczyk and Pasi Eronen. 2010. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869. https://doi.org/10.17487/RFC5869

[35] H. Krawczyk, M. Bellare, and R. Canetti. 1997. RFC2104: HMAC: Keyed-Hashing
for Message Authentication.

[36] Murray Kucherawy, Dave Crocker, and Tony Hansen. 2011. DomainKeys Identi-
fed Mail (DKIM) Signatures. RFC 6376. https://doi.org/10.17487/RFC6376

[37] Murray Kucherawy and Elizabeth Zwicky. 2015. Domain-based Message Au-
thentication, Reporting, and Conformance (DMARC). RFC 7489. https:
//doi.org/10.17487/RFC7489

[38] Adam Langley. 2010. Transport Layer Security (TLS) Snap Start. Internet-Draft
draft-agl-tls-snapstart-00. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/draft-agl-tls-snapstart/00/ Work in Progress.

[39] Adam Langley, Nagendra Modadugu, and Bodo Moeller. 2016. Transport Layer
Security (TLS) False Start. RFC 7918. https://doi.org/10.17487/RFC7918

[40] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. 2021. TLS 1.3 in Practice:How
TLS 1.3 Contributes to the Internet. In Proceedings of the Web Conference 2021
(Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New
York, NY, USA, 70–79. https://doi.org/10.1145/3442381.3450057

[41] U. Lindqvist and E. Jonsson. 1997. How to systematically classify computer
security intrusions. In Proceedings. 1997 IEEE Symposium on Security and Privacy
(Cat. No.97CB36097). 154–163. https://doi.org/10.1109/SECPRI.1997.601330

[42] Steve Lohr. 2012. For Impatient Web Users, an Eye Blink Is Just Too Long to
Wait. https://www.nytimes.com/2012/03/01/technology/impatient-web-users-
fee-slow-loading-sites.html. Retrieved: 2022-10-12.

[43] Daniel Margolis, Mark Risher, Binu Ramakrishnan, Alex Brotman, and Janet
Jones. 2018. SMTP MTA Strict Transport Security (MTA-STS). RFC 8461. https:
//doi.org/10.17487/RFC8461

[44] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco
Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste. 2014.
The Cost of the "S" in HTTPS. In Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments and Technologies (Sydney,
Australia) (CoNEXT ’14). Association for Computing Machinery, New York, NY,
USA, 133–140. https://doi.org/10.1145/2674005.2674991

[45] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[46] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2022. TLS
Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-14. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14 Work in
Progress.

[47] Florentin Rochet, Emery Assogba, Maxime Piraux, Korian Edeline, Benoit Don-
net, and Olivier Bonaventure. 2021. TCPLS: Modern Transport Services with
TCP and TLS. In Proceedings of the 17th International Conference on Emerging
Networking EXperiments and Technologies (Virtual Event, Germany) (CoNEXT
’21). Association for Computing Machinery, New York, NY, USA, 45–59. https:
//doi.org/10.1145/3485983.3494865

[48] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. DNS
Security Introduction and Requirements. RFC 4033. https://doi.org/10.17487/
RFC4033

[49] Joseph A. Salowey, Hao Zhou, Hannes Tschofenig, and Pasi Eronen. 2006. Trans-
port Layer Security (TLS) Session Resumption without Server-Side State. RFC
4507. https://doi.org/10.17487/RFC4507

2368

https://www.isc.org/bind/
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://csrc.nist.gov/glossary/term/integrity
https://www.openssl.org/source/
http://web.stanford.edu/class/ee380/Abstracts/151118-slides.pdf
http://web.stanford.edu/class/ee380/Abstracts/151118-slides.pdf
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0894
https://doi.org/10.17487/RFC1035
https://doi.org/10.17487/RFC1035
https://groups.google.com/a/chromium.org/g/proto-quic/c/4fjpJ7hUtgg
https://groups.google.com/a/chromium.org/g/proto-quic/c/4fjpJ7hUtgg
https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/
https://blogs.windows.com/msedgedev/2016/06/15/building-a-faster-and-more-secure-web-with-tcp-fast-open-tls-false-start-and-tls-1-3/
https://groups.google.com/a/chromium.org/g/proto-quic/c/zo7--OQLQBo
https://groups.google.com/a/chromium.org/g/proto-quic/c/zo7--OQLQBo
https://blog.cloudflare.com/encrypted-sni/
https://blog.cloudflare.com/encrypted-sni/
https://www.iso.org/standard/70907.html
https://hal.archives-ouvertes.fr/hal-01407640
https://doi.org/10.1109/COMST.2014.2375213
https://doi.org/10.1109/COMST.2014.2375213
https://doi.org/10.17487/RFC7413
https://doi.org/10.17487/RFC6891
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC9293
https://doi.org/10.17487/RFC5077
https://doi.org/10.1145/3442381.3450033
https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption/
https://blog.cloudflare.com/even-faster-connection-establishment-with-quic-0-rtt-resumption/
https://doi.org/10.17487/RFC7919
https://doi.org/10.17487/RFC7919
https://doi.org/10.17487/RFC6698
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC7208
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC6376
https://doi.org/10.17487/RFC7489
https://doi.org/10.17487/RFC7489
https://datatracker.ietf.org/doc/draft-agl-tls-snapstart/00/
https://datatracker.ietf.org/doc/draft-agl-tls-snapstart/00/
https://doi.org/10.17487/RFC7918
https://doi.org/10.1145/3442381.3450057
https://doi.org/10.1109/SECPRI.1997.601330
https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
https://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html
https://doi.org/10.17487/RFC8461
https://doi.org/10.17487/RFC8461
https://doi.org/10.1145/2674005.2674991
https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14
https://doi.org/10.1145/3485983.3494865
https://doi.org/10.1145/3485983.3494865
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC4507

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lim et al.

[50] Ankit Singla, Balakrishnan Chandrasekaran, P. Brighten Godfrey, and Bruce
Maggs. 2014. The Internet at the Speed of Light. In Proceedings of the 13th
ACM Workshop on Hot Topics in Networks (Los Angeles, CA, USA) (HotNets-
XIII). Association for Computing Machinery, New York, NY, USA, 1–7. https:
//doi.org/10.1145/2670518.2673876

[51] Sooel Son and Vitaly Shmatikov. 2010. The Hitchhiker’s Guide to DNS Cache
Poisoning. In Security and Privacy in Communication Networks, Sushil Jajodia and
Jianying Zhou (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 466–483.

[52] Drew Springall, Zakir Durumeric, and J. Alex Halderman. 2016. Measuring
the Security Harm of TLS Crypto Shortcuts. In Proceedings of the 2016 Internet
Measurement Conference (Santa Monica, California, USA) (IMC ’16). Association
for Computing Machinery, New York, NY, USA, 33–47. https://doi.org/10.1145/
2987443.2987480

[53] Nick Sullivan. 2017. Introducing Zero Round Trip Time Resumption. https:
//blog.cloudfare.com/introducing-0-rtt. Retrieved: 2022-10-12.

[54] Srikanth Sundaresan, Nazanin Magharei, Nick Feamster, and Renata Teixeira.
2012. Accelerating Last-Mile Web Performance with Popularity-Based Prefetch-
ing. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (Helsinki,
Finland) (SIGCOMM ’12). Association for Computing Machinery, New York, NY,
USA, 303–304. https://doi.org/10.1145/2342356.2342421

[55] Martin Thomson and Sean Turner. 2021. Using TLS to Secure QUIC. RFC 9001.
https://doi.org/10.17487/RFC9001

[56] Filippo Valsorda. 2016. An overview of TLS 1.3 and Q&A. https://blog.cloudfare.
com/tls-1-3-overview-and-q-and-a/. Retrieved: 2022-10-12.

[57] Zheng Wang. 2014. POSTER: On the Capability of DNS Cache Poisoning Attacks.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security (Scottsdale, Arizona, USA) (CCS ’14). Association for Computing
Machinery, New York, NY, USA, 1523–1525. https://doi.org/10.1145/2660267.
2662363

[58] Paul Wouters, Hannes Tschofenig, John IETF Gilmore, Samuel Weiler, and Tero
Kivinen. 2014. Using Raw Public Keys in Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS). RFC 7250. https://doi.org/10.17487/
RFC7250

[59] Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan
Manihatty-Bojan, Gianni Antichi, Marcin Wójcik, and Andrew W Moore. 2017.
Where has my time gone?. In International Conference on Passive and Active
network measurement (PAM). Springer, 201–214.

A ARCHITECTURAL TACTICS CONSIDERED
WHEN DESIGNING ZTLS

We discover a dependency on other computation anti-pattern [14],
which causes performance degradation, in the necessary procedure
before sending an initial HTTPS request.

Common tactics to solve the anti-pattern are controlling resource
demands and managing resources. The former is a method of reduc-
ing resource demands through algorithm optimization or degrada-
tion of the quality of service, which is not relevant to the problem
setting of this paper. Thus, We focus on managing resources.

Tactics typically used in the managing resources category in-
clude increasing resources, introducing concurrency, running multiple
copies of computations, maintaining multiple copies of data, bound-
ing queue sizes, and scheduling resources efciently [14]. Among
these approaches, increasing resources and running multiple copies
of computations cannot be used due to the cost of operating addi-
tional machines. Also, bounding queue sizes and scheduling resources
are not suitable for the problem domain of designing a handshake
protocol. We adopt two techniques: introducing concurrency and
maintaining multiple copies of data.

B AN INSTANCE OF Z-DATA
Among the felds of Z-data in ZTLS, the Certifcate is delivered as
a TLSA record, and the rest of the data is delivered as a TXT record.
Table 5 is an instance of Z-data excluding the Certifcate feld in a
TXT record.

Table 5: An instance of Z-data in a TXT record.

Z-data instance (TXT record)
" v=ztls1 " " 20211228035822z " " 20220108035822z " " 128000 " " 10000 "
" 29 " " MCowBQYDK2VuAy EANQ9MK/3Cm4igzj+cdzQLzzEwRAOcGs
jpjbGF/+yVzlY= " " N " " 2052 " " ozJjh2jihq2wWVdNLbwP6yISuvv
5pX5zfyZp6XZBjawp/LIv9oSKRMkghcKPHYWk MGpLBx5dw/ol4aBb
g+/0DavS9HmeNB0YyHEoou37qLKnHBKh/fp8Tu7NeEXJxG2I lnIAn6
0ITnd3v/X7dEDmUEeB/y1c7A4XQjgIn3nNYES3O8EMbi4SEMyU1h9Y
ds2V " " c94cvKaxyYK80k02h9oPN6iiO5HVtDXmgPmYEFRQUHDGnG
TORLXSJShhKl6fODZH BZdjh+PYTfda3Xp/IohmjHUylf9aBasSqirzX6
4HeNwOTn5yxDGacHRGITGsqIwB tJ1iQ6kMw5NALq9LQFA 6Bg== "

C THE EDNS0 BUG IN UBUNTU OS
During the experiment setup, we found a bug in systemd-resolved
of Ubuntu 20.04.3 LTS. The bug is that the maximum size of a
UDP payload is set to 512 bytes. We found out that the bug had
been reported to the systemd-resolved development community and
had been fxed in a pre-release version, v251-rc1. We adopted the
fx in our experimental settings. You can view the patch contents
and source at the following link — https://github.com/systemd/
systemd/commit/526fce9 and download the relevant update from
the following link — https://github.com/systemd/systemd/releases/
tag/v251-rc1.

D CHANGES REQUIRED TO CLIENTS,
SERVERS, AND DNS

Note that ZTLS is incrementally deployable as it is designed in
a backward-compatible fashion. Furthermore, changing clients,
servers, and DNS is simple. First, the client and server can use
ZTLS by upgrading the TLS library, where ZTLS is implemented,
with a minor change on the client/server applications. The only
change required for the client application is to query DNS for the
IP address and Z-data together and provide the Z-data to the TLS
library. The server application needs interfaces to access Zdata-
related keys, which are similar to the ones to access Session Ticket
Keys. Note that there are no changes required to DNS applications.
Authoritative name servers only need to provide TLSA and TXT
records.

E THE TENDENCY OF THE FIRST RESPONSE
TIMES IN THE EXPERIMENT

Despite some jitters, we can observe that ZTLS provides a tendency
for shorter response time than TLS in the experiment results which
are plotted in Figure 5.

2369

https://doi.org/10.1145/2670518.2673876
https://doi.org/10.1145/2670518.2673876
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/2987443.2987480
https://blog.cloudflare.com/introducing-0-rtt
https://blog.cloudflare.com/introducing-0-rtt
https://doi.org/10.1145/2342356.2342421
https://doi.org/10.17487/RFC9001
https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/
https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a/
https://doi.org/10.1145/2660267.2662363
https://doi.org/10.1145/2660267.2662363
https://doi.org/10.17487/RFC7250
https://doi.org/10.17487/RFC7250
https://github.com/systemd/systemd/commit/526fce9
https://github.com/systemd/systemd/commit/526fce9
https://github.com/systemd/systemd/releases/tag/v251-rc1
https://github.com/systemd/systemd/releases/tag/v251-rc1

ZTLS: A DNS-based Approach to Zero Round Trip Delay in TLS handshake WWW ’23, April 30–May 04, 2023, Austin, TX, USA

20

25

30

35

40

20

30

40

50

50

75

100

125

150

80

100

120

140

80

100

120

140

160

150

200

250

0 50 100 150 200

350

400

450

500

550

0 50 100 150 200
350

400

450

500

550

600

0 50 100 150 200

400

500

600

700

Re
sp

on
se

 T
im

e
(m

s)

Stub Resolver ISP DNS Resolver Public DNS Resolver

Seoul

Tokyo

Ohio

ZTLS TLS

Figure 5: The tendency of the frst response time for each case of DNS resolvers and ZTLS server locations.

2370

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 ZTLS Handshake Design
	4.1 Design considerations
	4.2 Overview
	4.3 Detailed ZTLS design
	4.4 Security analysis

	5 Evaluation
	5.1 Prototype implementation
	5.2 Experiment setup
	5.3 The first response latency

	6 Discussions
	7 Conclusion
	Acknowledgments
	References
	A Architectural tactics considered when designing ZTLS
	B An instance of Z-data
	C The EDNS0 bug in Ubuntu OS
	D Changes required to clients, servers, and DNS
	E The tendency of the first response times in the experiment

